\(\int \frac {(-1+x^4) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx\) [1878]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [N/A] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [N/A]
Giac [F(-2)]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 26, antiderivative size = 129 \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=\frac {4}{15} \sqrt {1+x} \sqrt {1+\sqrt {1+x}}+\frac {4}{15} (1+3 x) \sqrt {1+\sqrt {1+x}}-\frac {1}{2} \text {RootSum}\left [1+16 \text {$\#$1}^8-32 \text {$\#$1}^{10}+24 \text {$\#$1}^{12}-8 \text {$\#$1}^{14}+\text {$\#$1}^{16}\&,\frac {\log \left (\sqrt {1+\sqrt {1+x}}-\text {$\#$1}\right )}{-8 \text {$\#$1}^5+12 \text {$\#$1}^7-6 \text {$\#$1}^9+\text {$\#$1}^{11}}\&\right ] \] Output:

Unintegrable
 

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.88 \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=\frac {4}{15} \sqrt {1+\sqrt {1+x}} \left (-2+\sqrt {1+x}+3 (1+x)\right )-\frac {1}{2} \text {RootSum}\left [1+16 \text {$\#$1}^8-32 \text {$\#$1}^{10}+24 \text {$\#$1}^{12}-8 \text {$\#$1}^{14}+\text {$\#$1}^{16}\&,\frac {\log \left (\sqrt {1+\sqrt {1+x}}-\text {$\#$1}\right )}{-8 \text {$\#$1}^5+12 \text {$\#$1}^7-6 \text {$\#$1}^9+\text {$\#$1}^{11}}\&\right ] \] Input:

Integrate[((-1 + x^4)*Sqrt[1 + Sqrt[1 + x]])/(1 + x^4),x]
 

Output:

(4*Sqrt[1 + Sqrt[1 + x]]*(-2 + Sqrt[1 + x] + 3*(1 + x)))/15 - RootSum[1 + 
16*#1^8 - 32*#1^10 + 24*#1^12 - 8*#1^14 + #1^16 & , Log[Sqrt[1 + Sqrt[1 + 
x]] - #1]/(-8*#1^5 + 12*#1^7 - 6*#1^9 + #1^11) & ]/2
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^4-1\right ) \sqrt {\sqrt {x+1}+1}}{x^4+1} \, dx\)

\(\Big \downarrow \) 7267

\(\displaystyle 2 \int -\frac {\sqrt {x+1} \left (1-x^4\right ) \sqrt {\sqrt {x+1}+1}}{x^4+1}d\sqrt {x+1}\)

\(\Big \downarrow \) 9

\(\displaystyle 2 \int -\frac {(x+1)^{3/2} \sqrt {\sqrt {x+1}+1} \left (-(x+1)^3+4 (x+1)^2-6 (x+1)+4\right )}{x^4+1}d\sqrt {x+1}\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \int \frac {(x+1)^{3/2} \sqrt {\sqrt {x+1}+1} \left (-(x+1)^3+4 (x+1)^2-6 (x+1)+4\right )}{x^4+1}d\sqrt {x+1}\)

\(\Big \downarrow \) 7267

\(\displaystyle -4 \int \frac {x^3 (x+1) \left (-x^6+4 x^4-6 x^2+4\right )}{(1-x)^4 (x+1)^4+1}d\sqrt {\sqrt {x+1}+1}\)

\(\Big \downarrow \) 25

\(\displaystyle 4 \int -\frac {x^3 (x+1) \left (-x^6+4 x^4-6 x^2+4\right )}{(1-x)^4 (x+1)^4+1}d\sqrt {\sqrt {x+1}+1}\)

\(\Big \downarrow \) 7293

\(\displaystyle 4 \int \left ((x+1)^2-\frac {2 x (x+1)}{(1-x)^4 (x+1)^4+1}-x-1\right )d\sqrt {\sqrt {x+1}+1}\)

\(\Big \downarrow \) 2009

\(\displaystyle -4 \left (-2 \int \frac {x+1}{(x+1)^8-8 (x+1)^7+24 (x+1)^6-32 (x+1)^5+16 (x+1)^4+1}d\sqrt {\sqrt {x+1}+1}+2 \int \frac {(x+1)^2}{(x+1)^8-8 (x+1)^7+24 (x+1)^6-32 (x+1)^5+16 (x+1)^4+1}d\sqrt {\sqrt {x+1}+1}-\frac {1}{5} (x+1)^{5/2}+\frac {1}{3} (x+1)^{3/2}\right )\)

Input:

Int[((-1 + x^4)*Sqrt[1 + Sqrt[1 + x]])/(1 + x^4),x]
 

Output:

$Aborted
 
Maple [N/A] (verified)

Time = 0.09 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.81

method result size
derivativedivides \(\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {5}{2}}}{5}-\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {3}{2}}}{3}-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{16}-8 \textit {\_Z}^{14}+24 \textit {\_Z}^{12}-32 \textit {\_Z}^{10}+16 \textit {\_Z}^{8}+1\right )}{\sum }\frac {\left (\textit {\_R}^{4}-\textit {\_R}^{2}\right ) \ln \left (\sqrt {1+\sqrt {1+x}}-\textit {\_R} \right )}{\textit {\_R}^{15}-7 \textit {\_R}^{13}+18 \textit {\_R}^{11}-20 \textit {\_R}^{9}+8 \textit {\_R}^{7}}\right )}{2}\) \(105\)
default \(\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {5}{2}}}{5}-\frac {4 \left (1+\sqrt {1+x}\right )^{\frac {3}{2}}}{3}-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{16}-8 \textit {\_Z}^{14}+24 \textit {\_Z}^{12}-32 \textit {\_Z}^{10}+16 \textit {\_Z}^{8}+1\right )}{\sum }\frac {\left (\textit {\_R}^{4}-\textit {\_R}^{2}\right ) \ln \left (\sqrt {1+\sqrt {1+x}}-\textit {\_R} \right )}{\textit {\_R}^{15}-7 \textit {\_R}^{13}+18 \textit {\_R}^{11}-20 \textit {\_R}^{9}+8 \textit {\_R}^{7}}\right )}{2}\) \(105\)

Input:

int((x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x,method=_RETURNVERBOSE)
 

Output:

4/5*(1+(1+x)^(1/2))^(5/2)-4/3*(1+(1+x)^(1/2))^(3/2)-1/2*sum((_R^4-_R^2)/(_ 
R^15-7*_R^13+18*_R^11-20*_R^9+8*_R^7)*ln((1+(1+x)^(1/2))^(1/2)-_R),_R=Root 
Of(_Z^16-8*_Z^14+24*_Z^12-32*_Z^10+16*_Z^8+1))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=\text {Timed out} \] Input:

integrate((x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=\text {Timed out} \] Input:

integrate((x**4-1)*(1+(1+x)**(1/2))**(1/2)/(x**4+1),x)
 

Output:

Timed out
 

Maxima [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.19 \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=\int { \frac {{\left (x^{4} - 1\right )} \sqrt {\sqrt {x + 1} + 1}}{x^{4} + 1} \,d x } \] Input:

integrate((x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x, algorithm="maxima")
 

Output:

integrate((x^4 - 1)*sqrt(sqrt(x + 1) + 1)/(x^4 + 1), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Invalid _EXT in replace_ext Error: 
Bad Argument ValueDone
 

Mupad [N/A]

Not integrable

Time = 0.00 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.19 \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=\int \frac {\left (x^4-1\right )\,\sqrt {\sqrt {x+1}+1}}{x^4+1} \,d x \] Input:

int(((x^4 - 1)*((x + 1)^(1/2) + 1)^(1/2))/(x^4 + 1),x)
 

Output:

int(((x^4 - 1)*((x + 1)^(1/2) + 1)^(1/2))/(x^4 + 1), x)
 

Reduce [N/A]

Not integrable

Time = 0.34 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.31 \[ \int \frac {\left (-1+x^4\right ) \sqrt {1+\sqrt {1+x}}}{1+x^4} \, dx=-\left (\int \frac {\sqrt {\sqrt {x +1}+1}}{x^{4}+1}d x \right )+\int \frac {\sqrt {\sqrt {x +1}+1}\, x^{4}}{x^{4}+1}d x \] Input:

int((x^4-1)*(1+(1+x)^(1/2))^(1/2)/(x^4+1),x)
 

Output:

 - int(sqrt(sqrt(x + 1) + 1)/(x**4 + 1),x) + int((sqrt(sqrt(x + 1) + 1)*x* 
*4)/(x**4 + 1),x)