\(\int \frac {1+x^5}{\sqrt {1+x^4} (-1+x^5)} \, dx\) [2231]

Optimal result
Mathematica [A] (verified)
Rubi [B] (warning: unable to verify)
Maple [N/A] (verified)
Fricas [C] (verification not implemented)
Sympy [N/A]
Maxima [N/A]
Giac [N/A]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 22, antiderivative size = 166 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=-\frac {1}{5} \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} x}{1-2 x+x^2+\sqrt {1+x^4}}\right )+\frac {4}{5} \text {RootSum}\left [4+4 \text {$\#$1}+2 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {-2 \log (x)+2 \log \left (1+x^2+\sqrt {1+x^4}-x \text {$\#$1}\right )-\log (x) \text {$\#$1}+\log \left (1+x^2+\sqrt {1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}-\log (x) \text {$\#$1}^2+\log \left (1+x^2+\sqrt {1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^2}{2+3 \text {$\#$1}^2+2 \text {$\#$1}^3}\&\right ] \] Output:

Unintegrable
 

Mathematica [A] (verified)

Time = 1.83 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.00 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=-\frac {1}{5} \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} x}{1-2 x+x^2+\sqrt {1+x^4}}\right )+\frac {4}{5} \text {RootSum}\left [4+4 \text {$\#$1}+2 \text {$\#$1}^3+\text {$\#$1}^4\&,\frac {-2 \log (x)+2 \log \left (1+x^2+\sqrt {1+x^4}-x \text {$\#$1}\right )-\log (x) \text {$\#$1}+\log \left (1+x^2+\sqrt {1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}-\log (x) \text {$\#$1}^2+\log \left (1+x^2+\sqrt {1+x^4}-x \text {$\#$1}\right ) \text {$\#$1}^2}{2+3 \text {$\#$1}^2+2 \text {$\#$1}^3}\&\right ] \] Input:

Integrate[(1 + x^5)/(Sqrt[1 + x^4]*(-1 + x^5)),x]
 

Output:

-1/5*(Sqrt[2]*ArcTanh[(Sqrt[2]*x)/(1 - 2*x + x^2 + Sqrt[1 + x^4])]) + (4*R 
ootSum[4 + 4*#1 + 2*#1^3 + #1^4 & , (-2*Log[x] + 2*Log[1 + x^2 + Sqrt[1 + 
x^4] - x*#1] - Log[x]*#1 + Log[1 + x^2 + Sqrt[1 + x^4] - x*#1]*#1 - Log[x] 
*#1^2 + Log[1 + x^2 + Sqrt[1 + x^4] - x*#1]*#1^2)/(2 + 3*#1^2 + 2*#1^3) & 
])/5
 

Rubi [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1127\) vs. \(2(166)=332\).

Time = 1.91 (sec) , antiderivative size = 1127, normalized size of antiderivative = 6.79, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5+1}{\sqrt {x^4+1} \left (x^5-1\right )} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {1}{\sqrt {x^4+1}}+\frac {2}{\left (x^5-1\right ) \sqrt {x^4+1}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(-1)^{4/5} \left (1+\sqrt [5]{-1}\right ) \left (1+(-1)^{4/5}\right ) \arctan \left (\frac {\sqrt {\sqrt [5]{-1}-(-1)^{4/5}} x}{\sqrt {x^4+1}}\right )}{5 \left (1+(-1)^{3/5}\right ) \sqrt {\sqrt [5]{-1}-(-1)^{4/5}}}-\frac {\arctan \left (\frac {\sqrt {\sqrt [5]{-1}-(-1)^{4/5}} x}{\sqrt {x^4+1}}\right )}{5 \sqrt {\sqrt [5]{-1}-(-1)^{4/5}}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} x}{\sqrt {x^4+1}}\right )}{5 \sqrt {2}}-\frac {\left (1-\sqrt [5]{-1}+(-1)^{2/5}\right ) \left (1-(-1)^{3/5}\right ) \text {arctanh}\left (\frac {\sqrt {(-1)^{2/5}-(-1)^{3/5}} x}{\sqrt {x^4+1}}\right )}{5 \sqrt {(-1)^{2/5}-(-1)^{3/5}}}-\frac {\text {arctanh}\left (\frac {\sqrt {(-1)^{2/5}-(-1)^{3/5}} x}{\sqrt {x^4+1}}\right )}{5 \sqrt {(-1)^{2/5}-(-1)^{3/5}}}-\frac {\text {arctanh}\left (\frac {x^2+1}{\sqrt {2} \sqrt {x^4+1}}\right )}{5 \sqrt {2}}+\frac {\sqrt [5]{-1} \text {arctanh}\left (\frac {x^2+(-1)^{2/5}}{\sqrt {1+(-1)^{4/5}} \sqrt {x^4+1}}\right )}{5 \sqrt {1+(-1)^{4/5}}}-\frac {(-1)^{2/5} \text {arctanh}\left (\frac {x^2+(-1)^{4/5}}{\sqrt {1-(-1)^{3/5}} \sqrt {x^4+1}}\right )}{5 \sqrt {1-(-1)^{3/5}}}+\frac {(-1)^{4/5} \text {arctanh}\left (\frac {(-1)^{3/5} \left ((-1)^{2/5} x^2+1\right )}{\sqrt {1-\sqrt [5]{-1}} \sqrt {x^4+1}}\right )}{5 \sqrt {1-\sqrt [5]{-1}}}-\frac {(-1)^{3/5} \text {arctanh}\left (\frac {\sqrt [5]{-1} \left ((-1)^{4/5} x^2+1\right )}{\sqrt {1+(-1)^{2/5}} \sqrt {x^4+1}}\right )}{5 \sqrt {1+(-1)^{2/5}}}-\frac {\left (1-(-1)^{4/5}\right ) \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{5 \left (1+(-1)^{3/5}\right ) \sqrt {x^4+1}}-\frac {\left (1-\sqrt [5]{-1}+(-1)^{2/5}\right ) \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{5 \sqrt {x^4+1}}-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{5 \left (1+(-1)^{2/5}\right ) \sqrt {x^4+1}}-\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{5 \left (1-\sqrt [5]{-1}\right ) \sqrt {x^4+1}}+\frac {2 \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{2}\right )}{5 \sqrt {x^4+1}}+\frac {\sqrt [5]{-1} \left (1+\sqrt [5]{-1}\right ) \left (1+(-1)^{2/5}\right ) \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticPi}\left (\frac {1}{4} (-1)^{4/5} \left (1-\sqrt [5]{-1}\right )^2,2 \arctan (x),\frac {1}{2}\right )}{10 \sqrt {x^4+1}}+\frac {\left (1-(-1)^{2/5}\right ) \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticPi}\left (-\frac {1}{4} (-1)^{3/5} \left (1+(-1)^{2/5}\right )^2,2 \arctan (x),\frac {1}{2}\right )}{10 \left (1+(-1)^{2/5}\right ) \sqrt {x^4+1}}+\frac {(-1)^{3/5} \left (1-\sqrt [5]{-1}\right ) \left (1+(-1)^{3/5}\right ) \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticPi}\left (\frac {1}{4} (-1)^{2/5} \left (1-(-1)^{3/5}\right )^2,2 \arctan (x),\frac {1}{2}\right )}{10 \sqrt {x^4+1}}+\frac {\left (1-(-1)^{4/5}\right )^2 \left (x^2+1\right ) \sqrt {\frac {x^4+1}{\left (x^2+1\right )^2}} \operatorname {EllipticPi}\left (-\frac {1}{4} \sqrt [5]{-1} \left (1+(-1)^{4/5}\right )^2,2 \arctan (x),\frac {1}{2}\right )}{10 \left (1+(-1)^{3/5}\right ) \sqrt {x^4+1}}\)

Input:

Int[(1 + x^5)/(Sqrt[1 + x^4]*(-1 + x^5)),x]
 

Output:

-1/5*ArcTan[(Sqrt[(-1)^(1/5) - (-1)^(4/5)]*x)/Sqrt[1 + x^4]]/Sqrt[(-1)^(1/ 
5) - (-1)^(4/5)] + ((-1)^(4/5)*(1 + (-1)^(1/5))*(1 + (-1)^(4/5))*ArcTan[(S 
qrt[(-1)^(1/5) - (-1)^(4/5)]*x)/Sqrt[1 + x^4]])/(5*(1 + (-1)^(3/5))*Sqrt[( 
-1)^(1/5) - (-1)^(4/5)]) - ArcTanh[(Sqrt[2]*x)/Sqrt[1 + x^4]]/(5*Sqrt[2]) 
- ArcTanh[(Sqrt[(-1)^(2/5) - (-1)^(3/5)]*x)/Sqrt[1 + x^4]]/(5*Sqrt[(-1)^(2 
/5) - (-1)^(3/5)]) - ((1 - (-1)^(1/5) + (-1)^(2/5))*(1 - (-1)^(3/5))*ArcTa 
nh[(Sqrt[(-1)^(2/5) - (-1)^(3/5)]*x)/Sqrt[1 + x^4]])/(5*Sqrt[(-1)^(2/5) - 
(-1)^(3/5)]) - ArcTanh[(1 + x^2)/(Sqrt[2]*Sqrt[1 + x^4])]/(5*Sqrt[2]) + (( 
-1)^(1/5)*ArcTanh[((-1)^(2/5) + x^2)/(Sqrt[1 + (-1)^(4/5)]*Sqrt[1 + x^4])] 
)/(5*Sqrt[1 + (-1)^(4/5)]) - ((-1)^(2/5)*ArcTanh[((-1)^(4/5) + x^2)/(Sqrt[ 
1 - (-1)^(3/5)]*Sqrt[1 + x^4])])/(5*Sqrt[1 - (-1)^(3/5)]) + ((-1)^(4/5)*Ar 
cTanh[((-1)^(3/5)*(1 + (-1)^(2/5)*x^2))/(Sqrt[1 - (-1)^(1/5)]*Sqrt[1 + x^4 
])])/(5*Sqrt[1 - (-1)^(1/5)]) - ((-1)^(3/5)*ArcTanh[((-1)^(1/5)*(1 + (-1)^ 
(4/5)*x^2))/(Sqrt[1 + (-1)^(2/5)]*Sqrt[1 + x^4])])/(5*Sqrt[1 + (-1)^(2/5)] 
) + (2*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/2])/ 
(5*Sqrt[1 + x^4]) - ((1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^2]*EllipticF[2*Arc 
Tan[x], 1/2])/(5*(1 - (-1)^(1/5))*Sqrt[1 + x^4]) - ((1 + x^2)*Sqrt[(1 + x^ 
4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/2])/(5*(1 + (-1)^(2/5))*Sqrt[1 + 
x^4]) - ((1 - (-1)^(1/5) + (-1)^(2/5))*(1 + x^2)*Sqrt[(1 + x^4)/(1 + x^2)^ 
2]*EllipticF[2*ArcTan[x], 1/2])/(5*Sqrt[1 + x^4]) - ((1 - (-1)^(4/5))*(...
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [N/A] (verified)

Time = 3.02 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.74

method result size
default \(-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (x^{2}-x +1\right ) \sqrt {2}}{\sqrt {x^{4}+1}}\right )}{10}+\frac {\arctan \left (\frac {\sqrt {5}\, x^{2}-x^{2}+\sqrt {5}-4 x -1}{\sqrt {2+2 \sqrt {5}}\, \sqrt {x^{4}+1}}\right ) \sqrt {-2+2 \sqrt {5}}}{5}+\frac {\operatorname {arctanh}\left (\frac {\sqrt {5}\, x^{2}+x^{2}+\sqrt {5}+4 x +1}{\sqrt {-2+2 \sqrt {5}}\, \sqrt {x^{4}+1}}\right ) \sqrt {2+2 \sqrt {5}}}{5}\) \(123\)
pseudoelliptic \(-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (x^{2}-x +1\right ) \sqrt {2}}{\sqrt {x^{4}+1}}\right )}{10}+\frac {\arctan \left (\frac {\sqrt {5}\, x^{2}-x^{2}+\sqrt {5}-4 x -1}{\sqrt {2+2 \sqrt {5}}\, \sqrt {x^{4}+1}}\right ) \sqrt {-2+2 \sqrt {5}}}{5}+\frac {\operatorname {arctanh}\left (\frac {\sqrt {5}\, x^{2}+x^{2}+\sqrt {5}+4 x +1}{\sqrt {-2+2 \sqrt {5}}\, \sqrt {x^{4}+1}}\right ) \sqrt {2+2 \sqrt {5}}}{5}\) \(123\)
elliptic \(-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\left (2 x^{2}+2\right ) \sqrt {2}}{4 \sqrt {\left (x^{2}-1\right )^{2}+2 x^{2}}}\right )}{10}-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-\textit {\_Z}^{2}-1\right )}{\sum }\textit {\_R} \ln \left (\left (-x^{2}+\sqrt {x^{4}+1}\right )^{2}+\left (\textit {\_R}^{2}-\textit {\_R} -1\right ) \left (-x^{2}+\sqrt {x^{4}+1}\right )+\textit {\_R}^{2}-\textit {\_R} \right )\right )}{5}+\frac {\left (\frac {4 \arctan \left (\frac {\sqrt {2}\, \sqrt {x^{4}+1}}{x \sqrt {\sqrt {5}+1}}\right )}{5 \sqrt {\sqrt {5}+1}}-\frac {4 \,\operatorname {arctanh}\left (\frac {\sqrt {2}\, \sqrt {x^{4}+1}}{x \sqrt {\sqrt {5}-1}}\right )}{5 \sqrt {\sqrt {5}-1}}-\frac {\ln \left (1+\frac {\sqrt {2}\, \sqrt {x^{4}+1}}{2 x}\right )}{10}+\frac {\ln \left (-1+\frac {\sqrt {2}\, \sqrt {x^{4}+1}}{2 x}\right )}{10}\right ) \sqrt {2}}{2}\) \(206\)
trager \(-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (-\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x^{2}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right )+\sqrt {x^{4}+1}}{\left (-1+x \right )^{2}}\right )}{10}+\operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right ) \ln \left (\frac {-625 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{5} x -50 x^{2} \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{3}+250 x \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{3}+30 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-50 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{3}+12 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right ) x^{2}-24 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right ) x -8 \sqrt {x^{4}+1}+12 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )}{4 x^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2} x +4}\right )+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-4\right ) \ln \left (-\frac {625 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-4\right ) \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{4} x -50 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-4\right ) \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2} x^{2}+50 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-4\right ) \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2} x +150 \sqrt {x^{4}+1}\, \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-50 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2} \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-4\right )-4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-4\right ) x^{2}+16 \sqrt {x^{4}+1}-4 \operatorname {RootOf}\left (\textit {\_Z}^{2}+25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2}-4\right )}{25 \operatorname {RootOf}\left (625 \textit {\_Z}^{4}-100 \textit {\_Z}^{2}-16\right )^{2} x -4 x^{2}-4 x -4}\right )}{5}\) \(560\)

Input:

int((x^5+1)/(x^4+1)^(1/2)/(x^5-1),x,method=_RETURNVERBOSE)
 

Output:

-1/10*2^(1/2)*arctanh((x^2-x+1)*2^(1/2)/(x^4+1)^(1/2))+1/5*arctan((5^(1/2) 
*x^2-x^2+5^(1/2)-4*x-1)/(2+2*5^(1/2))^(1/2)/(x^4+1)^(1/2))*(-2+2*5^(1/2))^ 
(1/2)+1/5*arctanh((5^(1/2)*x^2+x^2+5^(1/2)+4*x+1)/(-2+2*5^(1/2))^(1/2)/(x^ 
4+1)^(1/2))*(2+2*5^(1/2))^(1/2)
 

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.20 (sec) , antiderivative size = 378, normalized size of antiderivative = 2.28 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=-\frac {1}{5} \, \sqrt {2 \, \sqrt {5} - 2} \arctan \left (\frac {\sqrt {x^{4} + 1} {\left (3 \, x^{2} + \sqrt {5} {\left (x^{2} + 2 \, x + 1\right )} + 2 \, x + 3\right )} \sqrt {2 \, \sqrt {5} - 2}}{4 \, {\left (x^{4} - 2 \, x^{3} - 2 \, x^{2} - 2 \, x + 1\right )}}\right ) + \frac {1}{20} \, \sqrt {2} \log \left (-\frac {3 \, x^{4} - 4 \, x^{3} - 2 \, \sqrt {2} \sqrt {x^{4} + 1} {\left (x^{2} - x + 1\right )} + 6 \, x^{2} - 4 \, x + 3}{x^{4} - 4 \, x^{3} + 6 \, x^{2} - 4 \, x + 1}\right ) - \frac {1}{10} \, \sqrt {2 \, \sqrt {5} + 2} \log \left (-\frac {2 \, \sqrt {x^{4} + 1} {\left (7 \, x^{2} - \sqrt {5} {\left (3 \, x^{2} + 5 \, x + 3\right )} + 11 \, x + 7\right )} + {\left (4 \, x^{4} - 7 \, x^{3} - 14 \, x^{2} - \sqrt {5} {\left (2 \, x^{4} - 3 \, x^{3} - 6 \, x^{2} - 3 \, x + 2\right )} - 7 \, x + 4\right )} \sqrt {2 \, \sqrt {5} + 2}}{x^{4} + x^{3} + x^{2} + x + 1}\right ) + \frac {1}{10} \, \sqrt {2 \, \sqrt {5} + 2} \log \left (-\frac {2 \, \sqrt {x^{4} + 1} {\left (7 \, x^{2} - \sqrt {5} {\left (3 \, x^{2} + 5 \, x + 3\right )} + 11 \, x + 7\right )} - {\left (4 \, x^{4} - 7 \, x^{3} - 14 \, x^{2} - \sqrt {5} {\left (2 \, x^{4} - 3 \, x^{3} - 6 \, x^{2} - 3 \, x + 2\right )} - 7 \, x + 4\right )} \sqrt {2 \, \sqrt {5} + 2}}{x^{4} + x^{3} + x^{2} + x + 1}\right ) \] Input:

integrate((x^5+1)/(x^4+1)^(1/2)/(x^5-1),x, algorithm="fricas")
 

Output:

-1/5*sqrt(2*sqrt(5) - 2)*arctan(1/4*sqrt(x^4 + 1)*(3*x^2 + sqrt(5)*(x^2 + 
2*x + 1) + 2*x + 3)*sqrt(2*sqrt(5) - 2)/(x^4 - 2*x^3 - 2*x^2 - 2*x + 1)) + 
 1/20*sqrt(2)*log(-(3*x^4 - 4*x^3 - 2*sqrt(2)*sqrt(x^4 + 1)*(x^2 - x + 1) 
+ 6*x^2 - 4*x + 3)/(x^4 - 4*x^3 + 6*x^2 - 4*x + 1)) - 1/10*sqrt(2*sqrt(5) 
+ 2)*log(-(2*sqrt(x^4 + 1)*(7*x^2 - sqrt(5)*(3*x^2 + 5*x + 3) + 11*x + 7) 
+ (4*x^4 - 7*x^3 - 14*x^2 - sqrt(5)*(2*x^4 - 3*x^3 - 6*x^2 - 3*x + 2) - 7* 
x + 4)*sqrt(2*sqrt(5) + 2))/(x^4 + x^3 + x^2 + x + 1)) + 1/10*sqrt(2*sqrt( 
5) + 2)*log(-(2*sqrt(x^4 + 1)*(7*x^2 - sqrt(5)*(3*x^2 + 5*x + 3) + 11*x + 
7) - (4*x^4 - 7*x^3 - 14*x^2 - sqrt(5)*(2*x^4 - 3*x^3 - 6*x^2 - 3*x + 2) - 
 7*x + 4)*sqrt(2*sqrt(5) + 2))/(x^4 + x^3 + x^2 + x + 1))
 

Sympy [N/A]

Not integrable

Time = 18.67 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.25 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=\int \frac {\left (x + 1\right ) \left (x^{4} - x^{3} + x^{2} - x + 1\right )}{\left (x - 1\right ) \sqrt {x^{4} + 1} \left (x^{4} + x^{3} + x^{2} + x + 1\right )}\, dx \] Input:

integrate((x**5+1)/(x**4+1)**(1/2)/(x**5-1),x)
 

Output:

Integral((x + 1)*(x**4 - x**3 + x**2 - x + 1)/((x - 1)*sqrt(x**4 + 1)*(x** 
4 + x**3 + x**2 + x + 1)), x)
 

Maxima [N/A]

Not integrable

Time = 0.18 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.13 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=\int { \frac {x^{5} + 1}{{\left (x^{5} - 1\right )} \sqrt {x^{4} + 1}} \,d x } \] Input:

integrate((x^5+1)/(x^4+1)^(1/2)/(x^5-1),x, algorithm="maxima")
 

Output:

integrate((x^5 + 1)/((x^5 - 1)*sqrt(x^4 + 1)), x)
 

Giac [N/A]

Not integrable

Time = 0.22 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.13 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=\int { \frac {x^{5} + 1}{{\left (x^{5} - 1\right )} \sqrt {x^{4} + 1}} \,d x } \] Input:

integrate((x^5+1)/(x^4+1)^(1/2)/(x^5-1),x, algorithm="giac")
 

Output:

integrate((x^5 + 1)/((x^5 - 1)*sqrt(x^4 + 1)), x)
 

Mupad [N/A]

Not integrable

Time = 7.84 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.13 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=\int \frac {x^5+1}{\sqrt {x^4+1}\,\left (x^5-1\right )} \,d x \] Input:

int((x^5 + 1)/((x^4 + 1)^(1/2)*(x^5 - 1)),x)
 

Output:

int((x^5 + 1)/((x^4 + 1)^(1/2)*(x^5 - 1)), x)
 

Reduce [N/A]

Not integrable

Time = 0.36 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.22 \[ \int \frac {1+x^5}{\sqrt {1+x^4} \left (-1+x^5\right )} \, dx=-\frac {\sqrt {2}\, \mathrm {log}\left (x^{2}-2 x +1\right )}{10}+\frac {\sqrt {2}\, \mathrm {log}\left (-\sqrt {x^{4}+1}\, \sqrt {2}+2 x^{2}-2 x +2\right )}{10}-\frac {4 \left (\int \frac {\sqrt {x^{4}+1}}{x^{8}+x^{7}+x^{6}+x^{5}+2 x^{4}+x^{3}+x^{2}+x +1}d x \right )}{5}+\frac {4 \left (\int \frac {\sqrt {x^{4}+1}\, x^{4}}{x^{8}+x^{7}+x^{6}+x^{5}+2 x^{4}+x^{3}+x^{2}+x +1}d x \right )}{5}+\frac {2 \left (\int \frac {\sqrt {x^{4}+1}\, x^{3}}{x^{8}+x^{7}+x^{6}+x^{5}+2 x^{4}+x^{3}+x^{2}+x +1}d x \right )}{5}-\frac {2 \left (\int \frac {\sqrt {x^{4}+1}\, x}{x^{8}+x^{7}+x^{6}+x^{5}+2 x^{4}+x^{3}+x^{2}+x +1}d x \right )}{5} \] Input:

int((x^5+1)/(x^4+1)^(1/2)/(x^5-1),x)
 

Output:

( - sqrt(2)*log(x**2 - 2*x + 1) + sqrt(2)*log( - sqrt(x**4 + 1)*sqrt(2) + 
2*x**2 - 2*x + 2) - 8*int(sqrt(x**4 + 1)/(x**8 + x**7 + x**6 + x**5 + 2*x* 
*4 + x**3 + x**2 + x + 1),x) + 8*int((sqrt(x**4 + 1)*x**4)/(x**8 + x**7 + 
x**6 + x**5 + 2*x**4 + x**3 + x**2 + x + 1),x) + 4*int((sqrt(x**4 + 1)*x** 
3)/(x**8 + x**7 + x**6 + x**5 + 2*x**4 + x**3 + x**2 + x + 1),x) - 4*int(( 
sqrt(x**4 + 1)*x)/(x**8 + x**7 + x**6 + x**5 + 2*x**4 + x**3 + x**2 + x + 
1),x))/10