\(\int \frac {x^8}{\sqrt {-1+x^4} (-1+x^{16})} \, dx\) [2265]

Optimal result
Mathematica [C] (verified)
Rubi [C] (warning: unable to verify)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 171 \[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=-\frac {x}{8 \sqrt {-1+x^4}}+\frac {1}{32} \arctan \left (\frac {-\frac {1}{2}-x^2+\frac {x^4}{2}}{x \sqrt {-1+x^4}}\right )+\frac {\arctan \left (\frac {\frac {1}{2^{3/4}}+\frac {x^2}{\sqrt [4]{2}}-\frac {x^4}{2^{3/4}}}{x \sqrt {-1+x^4}}\right )}{8\ 2^{3/4}}-\frac {1}{32} \text {arctanh}\left (\frac {-\frac {1}{2}+x^2+\frac {x^4}{2}}{x \sqrt {-1+x^4}}\right )+\frac {\text {arctanh}\left (\frac {2^{3/4} x \sqrt {-1+x^4}}{-1+\sqrt {2} x^2+x^4}\right )}{8\ 2^{3/4}} \] Output:

-1/8*x/(x^4-1)^(1/2)+1/32*arctan((-1/2-x^2+1/2*x^4)/x/(x^4-1)^(1/2))+1/16* 
arctan((1/2*2^(1/4)+1/2*x^2*2^(3/4)-1/2*x^4*2^(1/4))/x/(x^4-1)^(1/2))*2^(1 
/4)-1/32*arctanh((-1/2+x^2+1/2*x^4)/x/(x^4-1)^(1/2))+1/16*arctanh(2^(3/4)* 
x*(x^4-1)^(1/2)/(-1+2^(1/2)*x^2+x^4))*2^(1/4)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.70 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.84 \[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=\frac {1}{32} \left (-\frac {4 x}{\sqrt {-1+x^4}}-(1-i) \arctan \left (\frac {(1+i) x}{\sqrt {-1+x^4}}\right )+(1+i) \arctan \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {-1+x^4}}{x}\right )-2 \sqrt [4]{2} \arctan \left (\frac {2^{3/4} x \sqrt {-1+x^4}}{1+\sqrt {2} x^2-x^4}\right )+2 \sqrt [4]{2} \text {arctanh}\left (\frac {2^{3/4} x \sqrt {-1+x^4}}{-1+\sqrt {2} x^2+x^4}\right )\right ) \] Input:

Integrate[x^8/(Sqrt[-1 + x^4]*(-1 + x^16)),x]
 

Output:

((-4*x)/Sqrt[-1 + x^4] - (1 - I)*ArcTan[((1 + I)*x)/Sqrt[-1 + x^4]] + (1 + 
 I)*ArcTan[((1/2 + I/2)*Sqrt[-1 + x^4])/x] - 2*2^(1/4)*ArcTan[(2^(3/4)*x*S 
qrt[-1 + x^4])/(1 + Sqrt[2]*x^2 - x^4)] + 2*2^(1/4)*ArcTanh[(2^(3/4)*x*Sqr 
t[-1 + x^4])/(-1 + Sqrt[2]*x^2 + x^4)])/32
 

Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 1.34 (sec) , antiderivative size = 848, normalized size of antiderivative = 4.96, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8}{\sqrt {x^4-1} \left (x^{16}-1\right )} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (-\frac {1}{4 \left (x^4+1\right ) \sqrt {x^4-1}}+\frac {1}{2 \left (x^8+1\right ) \sqrt {x^4-1}}+\frac {1}{8 \left (x^2-1\right ) \sqrt {x^4-1}}-\frac {1}{8 \left (x^2+1\right ) \sqrt {x^4-1}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {E\left (\arcsin \left (\frac {\sqrt {2} \sqrt {x^2-1}}{\sqrt {x^4-1}}\right )|\frac {1}{2}\right ) x}{8 \sqrt {2} \sqrt {x^2}}-\frac {x}{4 \sqrt {x^4-1}}-\left (\frac {1}{32}-\frac {i}{32}\right ) \arctan \left (\frac {(1+i) x}{\sqrt {x^4-1}}\right )-\left (\frac {1}{32}-\frac {i}{32}\right ) \text {arctanh}\left (\frac {(1+i) x}{\sqrt {x^4-1}}\right )+\frac {\sqrt {x^2-1} \sqrt {x^2+1} E\left (\arcsin \left (\frac {\sqrt {2} x}{\sqrt {x^2-1}}\right )|\frac {1}{2}\right )}{8 \sqrt {2} \sqrt {x^4-1}}-\frac {(1+i) \sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticF}(\arcsin (x),-1)}{\left ((8+8 i)+8 \sqrt {2}\right ) \sqrt {x^4-1}}-\frac {\sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticF}(\arcsin (x),-1)}{8 \left (1+(-1)^{3/4}\right ) \sqrt {x^4-1}}-\frac {\sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticF}(\arcsin (x),-1)}{8 \left (1+\sqrt [4]{-1}\right ) \sqrt {x^4-1}}-\frac {\sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticF}(\arcsin (x),-1)}{8 \left (1-\sqrt [4]{-1}\right ) \sqrt {x^4-1}}+\frac {\sqrt {x^2-1} \sqrt {x^2+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} x}{\sqrt {x^2-1}}\right ),\frac {1}{2}\right )}{4 \left ((2-2 i)+2 \sqrt {2}\right ) \sqrt {x^4-1}}+\frac {\sqrt {x^2-1} \sqrt {x^2+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} x}{\sqrt {x^2-1}}\right ),\frac {1}{2}\right )}{8 \sqrt {2} \left (1+(-1)^{3/4}\right ) \sqrt {x^4-1}}+\frac {\sqrt {x^2-1} \sqrt {x^2+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} x}{\sqrt {x^2-1}}\right ),\frac {1}{2}\right )}{8 \sqrt {2} \left (1+\sqrt [4]{-1}\right ) \sqrt {x^4-1}}+\frac {\sqrt {x^2-1} \sqrt {x^2+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} x}{\sqrt {x^2-1}}\right ),\frac {1}{2}\right )}{8 \sqrt {2} \left (1-\sqrt [4]{-1}\right ) \sqrt {x^4-1}}-\frac {\sqrt {x^2-1} \sqrt {x^2+1} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} x}{\sqrt {x^2-1}}\right ),\frac {1}{2}\right )}{4 \sqrt {2} \sqrt {x^4-1}}+\frac {\sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticPi}\left (-\sqrt [4]{-1},\arcsin (x),-1\right )}{8 \sqrt {x^4-1}}+\frac {\sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticPi}\left (\sqrt [4]{-1},\arcsin (x),-1\right )}{8 \sqrt {x^4-1}}+\frac {\sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticPi}\left (-(-1)^{3/4},\arcsin (x),-1\right )}{8 \sqrt {x^4-1}}+\frac {\sqrt {1-x^2} \sqrt {x^2+1} \operatorname {EllipticPi}\left ((-1)^{3/4},\arcsin (x),-1\right )}{8 \sqrt {x^4-1}}\)

Input:

Int[x^8/(Sqrt[-1 + x^4]*(-1 + x^16)),x]
 

Output:

-1/4*x/Sqrt[-1 + x^4] - (1/32 - I/32)*ArcTan[((1 + I)*x)/Sqrt[-1 + x^4]] - 
 (1/32 - I/32)*ArcTanh[((1 + I)*x)/Sqrt[-1 + x^4]] + (Sqrt[-1 + x^2]*Sqrt[ 
1 + x^2]*EllipticE[ArcSin[(Sqrt[2]*x)/Sqrt[-1 + x^2]], 1/2])/(8*Sqrt[2]*Sq 
rt[-1 + x^4]) + (x*EllipticE[ArcSin[(Sqrt[2]*Sqrt[-1 + x^2])/Sqrt[-1 + x^4 
]], 1/2])/(8*Sqrt[2]*Sqrt[x^2]) - (Sqrt[1 - x^2]*Sqrt[1 + x^2]*EllipticF[A 
rcSin[x], -1])/(8*(1 - (-1)^(1/4))*Sqrt[-1 + x^4]) - (Sqrt[1 - x^2]*Sqrt[1 
 + x^2]*EllipticF[ArcSin[x], -1])/(8*(1 + (-1)^(1/4))*Sqrt[-1 + x^4]) - (S 
qrt[1 - x^2]*Sqrt[1 + x^2]*EllipticF[ArcSin[x], -1])/(8*(1 + (-1)^(3/4))*S 
qrt[-1 + x^4]) - ((1 + I)*Sqrt[1 - x^2]*Sqrt[1 + x^2]*EllipticF[ArcSin[x], 
 -1])/(((8 + 8*I) + 8*Sqrt[2])*Sqrt[-1 + x^4]) - (Sqrt[-1 + x^2]*Sqrt[1 + 
x^2]*EllipticF[ArcSin[(Sqrt[2]*x)/Sqrt[-1 + x^2]], 1/2])/(4*Sqrt[2]*Sqrt[- 
1 + x^4]) + (Sqrt[-1 + x^2]*Sqrt[1 + x^2]*EllipticF[ArcSin[(Sqrt[2]*x)/Sqr 
t[-1 + x^2]], 1/2])/(8*Sqrt[2]*(1 - (-1)^(1/4))*Sqrt[-1 + x^4]) + (Sqrt[-1 
 + x^2]*Sqrt[1 + x^2]*EllipticF[ArcSin[(Sqrt[2]*x)/Sqrt[-1 + x^2]], 1/2])/ 
(8*Sqrt[2]*(1 + (-1)^(1/4))*Sqrt[-1 + x^4]) + (Sqrt[-1 + x^2]*Sqrt[1 + x^2 
]*EllipticF[ArcSin[(Sqrt[2]*x)/Sqrt[-1 + x^2]], 1/2])/(8*Sqrt[2]*(1 + (-1) 
^(3/4))*Sqrt[-1 + x^4]) + (Sqrt[-1 + x^2]*Sqrt[1 + x^2]*EllipticF[ArcSin[( 
Sqrt[2]*x)/Sqrt[-1 + x^2]], 1/2])/(4*((2 - 2*I) + 2*Sqrt[2])*Sqrt[-1 + x^4 
]) + (Sqrt[1 - x^2]*Sqrt[1 + x^2]*EllipticPi[-(-1)^(1/4), ArcSin[x], -1])/ 
(8*Sqrt[-1 + x^4]) + (Sqrt[1 - x^2]*Sqrt[1 + x^2]*EllipticPi[(-1)^(1/4)...
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 5.43 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.96

method result size
risch \(-\frac {x}{8 \sqrt {x^{4}-1}}-\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-8 i \textit {\_Z}^{6}+8 \textit {\_Z}^{4}+32 i \textit {\_Z}^{2}+16\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x -x^{2}+\sqrt {x^{4}-1}-i}{x}\right ) \left (i \textit {\_R}^{6}+2 \textit {\_R}^{4}+4 i \textit {\_R}^{2}+8\right )}{\left (i \textit {\_R}^{6}+6 \textit {\_R}^{4}+4 i \textit {\_R}^{2}-8\right ) \textit {\_R}}\right )}{16}+\left (-\frac {1}{32}-\frac {i}{32}\right ) \ln \left (\frac {\left (1+i\right ) \sqrt {x^{4}-1}+2 x}{i x^{2}-1}\right )+\left (\frac {1}{32}+\frac {i}{32}\right ) \arctan \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {x^{4}-1}}{x}\right )+\left (-\frac {1}{32}-\frac {i}{32}\right ) \ln \left (2\right )\) \(164\)
default \(\frac {2 \left (x^{4}-1\right ) \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-8 i \textit {\_Z}^{6}+8 \textit {\_Z}^{4}+32 i \textit {\_Z}^{2}+16\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x -x^{2}+\sqrt {x^{4}-1}-i}{x}\right ) \left (i \textit {\_R}^{6}+2 \textit {\_R}^{4}+4 i \textit {\_R}^{2}+8\right )}{\left (i \textit {\_R}^{6}+6 \textit {\_R}^{4}+4 i \textit {\_R}^{2}-8\right ) \textit {\_R}}\right )+\left (1+i\right ) \left (x^{4}-1\right ) \ln \left (\frac {\left (1+i\right ) \sqrt {x^{4}-1}+2 x}{i x^{2}-1}\right )+\left (1+i\right ) \left (-x^{4}+1\right ) \arctan \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {x^{4}-1}}{x}\right )+4 x \sqrt {x^{4}-1}+\left (1+i\right ) \ln \left (2\right ) \left (-1+x \right ) \left (1+x \right ) \left (x^{2}+1\right )}{32 \left (-1+x \right ) \left (1+x \right ) \left (i+x \right ) \left (i-x \right )}\) \(218\)
pseudoelliptic \(\frac {2 \left (x^{4}-1\right ) \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}-8 i \textit {\_Z}^{6}+8 \textit {\_Z}^{4}+32 i \textit {\_Z}^{2}+16\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x -x^{2}+\sqrt {x^{4}-1}-i}{x}\right ) \left (i \textit {\_R}^{6}+2 \textit {\_R}^{4}+4 i \textit {\_R}^{2}+8\right )}{\left (i \textit {\_R}^{6}+6 \textit {\_R}^{4}+4 i \textit {\_R}^{2}-8\right ) \textit {\_R}}\right )+\left (1+i\right ) \left (x^{4}-1\right ) \ln \left (\frac {\left (1+i\right ) \sqrt {x^{4}-1}+2 x}{i x^{2}-1}\right )+\left (1+i\right ) \left (-x^{4}+1\right ) \arctan \left (\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt {x^{4}-1}}{x}\right )+4 x \sqrt {x^{4}-1}+\left (1+i\right ) \ln \left (2\right ) \left (-1+x \right ) \left (1+x \right ) \left (x^{2}+1\right )}{32 \left (-1+x \right ) \left (1+x \right ) \left (i+x \right ) \left (i-x \right )}\) \(218\)
elliptic \(\frac {\left (\frac {\sqrt {2}\, \left (\ln \left (\frac {\frac {x^{4}-1}{2 x^{2}}-\frac {\sqrt {x^{4}-1}}{x}+1}{\frac {x^{4}-1}{2 x^{2}}+\frac {\sqrt {x^{4}-1}}{x}+1}\right )+2 \arctan \left (\frac {\sqrt {x^{4}-1}}{x}+1\right )+2 \arctan \left (\frac {\sqrt {x^{4}-1}}{x}-1\right )\right )}{64}-\frac {\sqrt {2}\, x}{8 \sqrt {x^{4}-1}}-\frac {2^{\frac {3}{4}} \left (\ln \left (\frac {\frac {x^{4}-1}{2 x^{2}}-\frac {2^{\frac {3}{4}} \sqrt {x^{4}-1}}{2 x}+\frac {\sqrt {2}}{2}}{\frac {x^{4}-1}{2 x^{2}}+\frac {2^{\frac {3}{4}} \sqrt {x^{4}-1}}{2 x}+\frac {\sqrt {2}}{2}}\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \sqrt {x^{4}-1}}{x}+1\right )+2 \arctan \left (\frac {2^{\frac {1}{4}} \sqrt {x^{4}-1}}{x}-1\right )\right )}{32}\right ) \sqrt {2}}{2}\) \(219\)

Input:

int(x^8/(x^4-1)^(1/2)/(x^16-1),x,method=_RETURNVERBOSE)
 

Output:

-1/8*x/(x^4-1)^(1/2)-1/16*sum(ln((-_R*x-x^2+(x^4-1)^(1/2)-I)/x)*(I*_R^6+2* 
_R^4+4*I*_R^2+8)/(I*_R^6+6*_R^4+4*I*_R^2-8)/_R,_R=RootOf(_Z^8-8*I*_Z^6+8*_ 
Z^4+32*I*_Z^2+16))-(1/32+1/32*I)*ln(((1+I)*(x^4-1)^(1/2)+2*x)/(I*x^2-1))+( 
1/32+1/32*I)*arctan((1/2+1/2*I)*(x^4-1)^(1/2)/x)-(1/32+1/32*I)*ln(2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 452 vs. \(2 (132) = 264\).

Time = 0.24 (sec) , antiderivative size = 452, normalized size of antiderivative = 2.64 \[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=\frac {2 \cdot 8^{\frac {3}{4}} {\left (x^{4} - 1\right )} \arctan \left (\frac {x^{16} + 2 \, x^{8} + 4 \, \sqrt {2} {\left (x^{14} - x^{10} + x^{6} - x^{2}\right )} + \sqrt {x^{4} - 1} {\left (8^{\frac {3}{4}} {\left (3 \, x^{11} - 8 \, x^{7} + 3 \, x^{3}\right )} + 2 \cdot 8^{\frac {1}{4}} {\left (x^{13} - 9 \, x^{9} + 9 \, x^{5} - x\right )}\right )} + 1}{x^{16} - 32 \, x^{12} + 66 \, x^{8} - 32 \, x^{4} + 1}\right ) + 2 \cdot 8^{\frac {3}{4}} {\left (x^{4} - 1\right )} \arctan \left (-\frac {x^{16} + 2 \, x^{8} + 4 \, \sqrt {2} {\left (x^{14} - x^{10} + x^{6} - x^{2}\right )} - \sqrt {x^{4} - 1} {\left (8^{\frac {3}{4}} {\left (3 \, x^{11} - 8 \, x^{7} + 3 \, x^{3}\right )} + 2 \cdot 8^{\frac {1}{4}} {\left (x^{13} - 9 \, x^{9} + 9 \, x^{5} - x\right )}\right )} + 1}{x^{16} - 32 \, x^{12} + 66 \, x^{8} - 32 \, x^{4} + 1}\right ) + 8^{\frac {3}{4}} {\left (x^{4} - 1\right )} \log \left (\frac {2 \, {\left (8 \, x^{6} - 8 \, x^{2} + \sqrt {2} {\left (x^{8} + 1\right )} + \sqrt {x^{4} - 1} {\left (4 \cdot 8^{\frac {1}{4}} x^{3} + 8^{\frac {3}{4}} {\left (x^{5} - x\right )}\right )}\right )}}{x^{8} + 1}\right ) - 8^{\frac {3}{4}} {\left (x^{4} - 1\right )} \log \left (\frac {2 \, {\left (8 \, x^{6} - 8 \, x^{2} + \sqrt {2} {\left (x^{8} + 1\right )} - \sqrt {x^{4} - 1} {\left (4 \cdot 8^{\frac {1}{4}} x^{3} + 8^{\frac {3}{4}} {\left (x^{5} - x\right )}\right )}\right )}}{x^{8} + 1}\right ) + 16 \, {\left (x^{4} - 1\right )} \arctan \left (\frac {\sqrt {x^{4} - 1} x}{x^{2} + 1}\right ) + 8 \, {\left (x^{4} - 1\right )} \log \left (\frac {x^{4} + 2 \, x^{2} - 2 \, \sqrt {x^{4} - 1} x - 1}{x^{4} + 1}\right ) - 32 \, \sqrt {x^{4} - 1} x}{256 \, {\left (x^{4} - 1\right )}} \] Input:

integrate(x^8/(x^4-1)^(1/2)/(x^16-1),x, algorithm="fricas")
 

Output:

1/256*(2*8^(3/4)*(x^4 - 1)*arctan((x^16 + 2*x^8 + 4*sqrt(2)*(x^14 - x^10 + 
 x^6 - x^2) + sqrt(x^4 - 1)*(8^(3/4)*(3*x^11 - 8*x^7 + 3*x^3) + 2*8^(1/4)* 
(x^13 - 9*x^9 + 9*x^5 - x)) + 1)/(x^16 - 32*x^12 + 66*x^8 - 32*x^4 + 1)) + 
 2*8^(3/4)*(x^4 - 1)*arctan(-(x^16 + 2*x^8 + 4*sqrt(2)*(x^14 - x^10 + x^6 
- x^2) - sqrt(x^4 - 1)*(8^(3/4)*(3*x^11 - 8*x^7 + 3*x^3) + 2*8^(1/4)*(x^13 
 - 9*x^9 + 9*x^5 - x)) + 1)/(x^16 - 32*x^12 + 66*x^8 - 32*x^4 + 1)) + 8^(3 
/4)*(x^4 - 1)*log(2*(8*x^6 - 8*x^2 + sqrt(2)*(x^8 + 1) + sqrt(x^4 - 1)*(4* 
8^(1/4)*x^3 + 8^(3/4)*(x^5 - x)))/(x^8 + 1)) - 8^(3/4)*(x^4 - 1)*log(2*(8* 
x^6 - 8*x^2 + sqrt(2)*(x^8 + 1) - sqrt(x^4 - 1)*(4*8^(1/4)*x^3 + 8^(3/4)*( 
x^5 - x)))/(x^8 + 1)) + 16*(x^4 - 1)*arctan(sqrt(x^4 - 1)*x/(x^2 + 1)) + 8 
*(x^4 - 1)*log((x^4 + 2*x^2 - 2*sqrt(x^4 - 1)*x - 1)/(x^4 + 1)) - 32*sqrt( 
x^4 - 1)*x)/(x^4 - 1)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=\text {Timed out} \] Input:

integrate(x**8/(x**4-1)**(1/2)/(x**16-1),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=\int { \frac {x^{8}}{{\left (x^{16} - 1\right )} \sqrt {x^{4} - 1}} \,d x } \] Input:

integrate(x^8/(x^4-1)^(1/2)/(x^16-1),x, algorithm="maxima")
 

Output:

integrate(x^8/((x^16 - 1)*sqrt(x^4 - 1)), x)
 

Giac [F]

\[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=\int { \frac {x^{8}}{{\left (x^{16} - 1\right )} \sqrt {x^{4} - 1}} \,d x } \] Input:

integrate(x^8/(x^4-1)^(1/2)/(x^16-1),x, algorithm="giac")
 

Output:

integrate(x^8/((x^16 - 1)*sqrt(x^4 - 1)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=\int \frac {x^8}{\sqrt {x^4-1}\,\left (x^{16}-1\right )} \,d x \] Input:

int(x^8/((x^4 - 1)^(1/2)*(x^16 - 1)),x)
 

Output:

int(x^8/((x^4 - 1)^(1/2)*(x^16 - 1)), x)
 

Reduce [F]

\[ \int \frac {x^8}{\sqrt {-1+x^4} \left (-1+x^{16}\right )} \, dx=\int \frac {\sqrt {x^{4}-1}\, x^{8}}{x^{20}-x^{16}-x^{4}+1}d x \] Input:

int(x^8/(x^4-1)^(1/2)/(x^16-1),x)
 

Output:

int((sqrt(x**4 - 1)*x**8)/(x**20 - x**16 - x**4 + 1),x)