\(\int \frac {x^4}{\sqrt [4]{x^2+x^6} (-1+x^8)} \, dx\) [2360]

Optimal result
Mathematica [A] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 187 \[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=\frac {\left (x^2+x^6\right )^{3/4}}{2 x \left (1+x^4\right )}-\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^2+x^6}}\right )}{8 \sqrt [4]{2}}+\frac {\arctan \left (\frac {2^{3/4} x \sqrt [4]{x^2+x^6}}{\sqrt {2} x^2-\sqrt {x^2+x^6}}\right )}{8\ 2^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^2+x^6}}\right )}{8 \sqrt [4]{2}}-\frac {\text {arctanh}\left (\frac {\frac {x^2}{\sqrt [4]{2}}+\frac {\sqrt {x^2+x^6}}{2^{3/4}}}{x \sqrt [4]{x^2+x^6}}\right )}{8\ 2^{3/4}} \] Output:

1/2*(x^6+x^2)^(3/4)/x/(x^4+1)-1/16*arctan(2^(1/4)*x/(x^6+x^2)^(1/4))*2^(3/ 
4)+1/16*arctan(2^(3/4)*x*(x^6+x^2)^(1/4)/(2^(1/2)*x^2-(x^6+x^2)^(1/2)))*2^ 
(1/4)-1/16*arctanh(2^(1/4)*x/(x^6+x^2)^(1/4))*2^(3/4)-1/16*arctanh((1/2*x^ 
2*2^(3/4)+1/2*(x^6+x^2)^(1/2)*2^(1/4))/x/(x^6+x^2)^(1/4))*2^(1/4)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.17 \[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=\frac {\sqrt {x} \left (8 \sqrt {x}-2^{3/4} \sqrt [4]{1+x^4} \arctan \left (\frac {\sqrt [4]{2} \sqrt {x}}{\sqrt [4]{1+x^4}}\right )+\sqrt [4]{2} \sqrt [4]{1+x^4} \arctan \left (\frac {2^{3/4} \sqrt {x} \sqrt [4]{1+x^4}}{\sqrt {2} x-\sqrt {1+x^4}}\right )-2^{3/4} \sqrt [4]{1+x^4} \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt {x}}{\sqrt [4]{1+x^4}}\right )-\sqrt [4]{2} \sqrt [4]{1+x^4} \text {arctanh}\left (\frac {2 \sqrt [4]{2} \sqrt {x} \sqrt [4]{1+x^4}}{2 x+\sqrt {2} \sqrt {1+x^4}}\right )\right )}{16 \sqrt [4]{x^2+x^6}} \] Input:

Integrate[x^4/((x^2 + x^6)^(1/4)*(-1 + x^8)),x]
 

Output:

(Sqrt[x]*(8*Sqrt[x] - 2^(3/4)*(1 + x^4)^(1/4)*ArcTan[(2^(1/4)*Sqrt[x])/(1 
+ x^4)^(1/4)] + 2^(1/4)*(1 + x^4)^(1/4)*ArcTan[(2^(3/4)*Sqrt[x]*(1 + x^4)^ 
(1/4))/(Sqrt[2]*x - Sqrt[1 + x^4])] - 2^(3/4)*(1 + x^4)^(1/4)*ArcTanh[(2^( 
1/4)*Sqrt[x])/(1 + x^4)^(1/4)] - 2^(1/4)*(1 + x^4)^(1/4)*ArcTanh[(2*2^(1/4 
)*Sqrt[x]*(1 + x^4)^(1/4))/(2*x + Sqrt[2]*Sqrt[1 + x^4])]))/(16*(x^2 + x^6 
)^(1/4))
 

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 0.32 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.25, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {2467, 25, 1388, 966, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\sqrt [4]{x^6+x^2} \left (x^8-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt {x} \sqrt [4]{x^4+1} \int -\frac {x^{7/2}}{\sqrt [4]{x^4+1} \left (1-x^8\right )}dx}{\sqrt [4]{x^6+x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{x^4+1} \int \frac {x^{7/2}}{\sqrt [4]{x^4+1} \left (1-x^8\right )}dx}{\sqrt [4]{x^6+x^2}}\)

\(\Big \downarrow \) 1388

\(\displaystyle -\frac {\sqrt {x} \sqrt [4]{x^4+1} \int \frac {x^{7/2}}{\left (1-x^4\right ) \left (x^4+1\right )^{5/4}}dx}{\sqrt [4]{x^6+x^2}}\)

\(\Big \downarrow \) 966

\(\displaystyle -\frac {2 \sqrt {x} \sqrt [4]{x^4+1} \int \frac {x^4}{\left (1-x^4\right ) \left (x^4+1\right )^{5/4}}d\sqrt {x}}{\sqrt [4]{x^6+x^2}}\)

\(\Big \downarrow \) 1012

\(\displaystyle -\frac {2 x^5 \sqrt [4]{x^4+1} \operatorname {AppellF1}\left (\frac {9}{8},1,\frac {5}{4},\frac {17}{8},x^4,-x^4\right )}{9 \sqrt [4]{x^6+x^2}}\)

Input:

Int[x^4/((x^2 + x^6)^(1/4)*(-1 + x^8)),x]
 

Output:

(-2*x^5*(1 + x^4)^(1/4)*AppellF1[9/8, 1, 5/4, 17/8, x^4, -x^4])/(9*(x^2 + 
x^6)^(1/4))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 966
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_) 
)^(q_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/e   Subst[Int[x^(k*( 
m + 1) - 1)*(a + b*(x^(k*n)/e^n))^p*(c + d*(x^(k*n)/e^n))^q, x], x, (e*x)^( 
1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[ 
n, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1388
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), 
x_Symbol] :> Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, 
 c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (Integer 
Q[p] || (GtQ[a, 0] && GtQ[d, 0]))
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 
Maple [A] (verified)

Time = 32.59 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.48

method result size
pseudoelliptic \(\frac {2 \arctan \left (\frac {2^{\frac {3}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}}{2 x}\right ) 2^{\frac {3}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}-\ln \left (\frac {2^{\frac {1}{4}} x +\left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}}{-2^{\frac {1}{4}} x +\left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}}\right ) 2^{\frac {3}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}+\ln \left (\frac {-2^{\frac {3}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}} x +\sqrt {2}\, x^{2}+\sqrt {x^{2} \left (x^{4}+1\right )}}{2^{\frac {3}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}} x +\sqrt {2}\, x^{2}+\sqrt {x^{2} \left (x^{4}+1\right )}}\right ) 2^{\frac {1}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}+2 \arctan \left (\frac {2^{\frac {1}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}+x}{x}\right ) 2^{\frac {1}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}+2 \arctan \left (\frac {2^{\frac {1}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}-x}{x}\right ) 2^{\frac {1}{4}} \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}+16 x}{32 \left (x^{2} \left (x^{4}+1\right )\right )^{\frac {1}{4}}}\) \(277\)
risch \(\text {Expression too large to display}\) \(646\)
trager \(\text {Expression too large to display}\) \(655\)

Input:

int(x^4/(x^6+x^2)^(1/4)/(x^8-1),x,method=_RETURNVERBOSE)
 

Output:

1/32*(2*arctan(1/2*2^(3/4)*(x^2*(x^4+1))^(1/4)/x)*2^(3/4)*(x^2*(x^4+1))^(1 
/4)-ln((2^(1/4)*x+(x^2*(x^4+1))^(1/4))/(-2^(1/4)*x+(x^2*(x^4+1))^(1/4)))*2 
^(3/4)*(x^2*(x^4+1))^(1/4)+ln((-2^(3/4)*(x^2*(x^4+1))^(1/4)*x+2^(1/2)*x^2+ 
(x^2*(x^4+1))^(1/2))/(2^(3/4)*(x^2*(x^4+1))^(1/4)*x+2^(1/2)*x^2+(x^2*(x^4+ 
1))^(1/2)))*2^(1/4)*(x^2*(x^4+1))^(1/4)+2*arctan((2^(1/4)*(x^2*(x^4+1))^(1 
/4)+x)/x)*2^(1/4)*(x^2*(x^4+1))^(1/4)+2*arctan((2^(1/4)*(x^2*(x^4+1))^(1/4 
)-x)/x)*2^(1/4)*(x^2*(x^4+1))^(1/4)+16*x)/(x^2*(x^4+1))^(1/4)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 451 vs. \(2 (144) = 288\).

Time = 3.31 (sec) , antiderivative size = 451, normalized size of antiderivative = 2.41 \[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=-\frac {4 \cdot 8^{\frac {3}{4}} {\left (x^{5} + x\right )} \arctan \left (-\frac {8^{\frac {3}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )} - 4 \cdot 8^{\frac {1}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {3}{4}}}{8 \, {\left (x^{5} + x\right )}}\right ) + 8 \cdot 2^{\frac {3}{4}} {\left (x^{5} + x\right )} \arctan \left (-\frac {2^{\frac {3}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}} {\left (x^{4} + 1\right )} - 2 \cdot 2^{\frac {1}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {3}{4}}}{4 \, {\left (x^{5} + x\right )}}\right ) + 8^{\frac {3}{4}} {\left (x^{5} + x\right )} \log \left (\frac {x^{5} + 8^{\frac {3}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}} x^{2} + 2 \, x^{3} + 4 \, \sqrt {2} \sqrt {x^{6} + x^{2}} x + 2 \cdot 8^{\frac {1}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {3}{4}} + x}{x^{5} + 2 \, x^{3} + x}\right ) - 8^{\frac {3}{4}} {\left (x^{5} + x\right )} \log \left (\frac {x^{5} - 8^{\frac {3}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}} x^{2} + 2 \, x^{3} + 4 \, \sqrt {2} \sqrt {x^{6} + x^{2}} x - 2 \cdot 8^{\frac {1}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {3}{4}} + x}{x^{5} + 2 \, x^{3} + x}\right ) + 4 \cdot 2^{\frac {3}{4}} {\left (x^{5} + x\right )} \log \left (\frac {4 \cdot 2^{\frac {1}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}} x^{2} + 2 \cdot 2^{\frac {3}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {3}{4}} + \sqrt {2} {\left (x^{5} + 2 \, x^{3} + x\right )} + 4 \, \sqrt {x^{6} + x^{2}} x}{x^{5} - 2 \, x^{3} + x}\right ) - 4 \cdot 2^{\frac {3}{4}} {\left (x^{5} + x\right )} \log \left (-\frac {4 \cdot 2^{\frac {1}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}} x^{2} + 2 \cdot 2^{\frac {3}{4}} {\left (x^{6} + x^{2}\right )}^{\frac {3}{4}} - \sqrt {2} {\left (x^{5} + 2 \, x^{3} + x\right )} - 4 \, \sqrt {x^{6} + x^{2}} x}{x^{5} - 2 \, x^{3} + x}\right ) - 128 \, {\left (x^{6} + x^{2}\right )}^{\frac {3}{4}}}{256 \, {\left (x^{5} + x\right )}} \] Input:

integrate(x^4/(x^6+x^2)^(1/4)/(x^8-1),x, algorithm="fricas")
 

Output:

-1/256*(4*8^(3/4)*(x^5 + x)*arctan(-1/8*(8^(3/4)*(x^6 + x^2)^(1/4)*(x^4 + 
1) - 4*8^(1/4)*(x^6 + x^2)^(3/4))/(x^5 + x)) + 8*2^(3/4)*(x^5 + x)*arctan( 
-1/4*(2^(3/4)*(x^6 + x^2)^(1/4)*(x^4 + 1) - 2*2^(1/4)*(x^6 + x^2)^(3/4))/( 
x^5 + x)) + 8^(3/4)*(x^5 + x)*log((x^5 + 8^(3/4)*(x^6 + x^2)^(1/4)*x^2 + 2 
*x^3 + 4*sqrt(2)*sqrt(x^6 + x^2)*x + 2*8^(1/4)*(x^6 + x^2)^(3/4) + x)/(x^5 
 + 2*x^3 + x)) - 8^(3/4)*(x^5 + x)*log((x^5 - 8^(3/4)*(x^6 + x^2)^(1/4)*x^ 
2 + 2*x^3 + 4*sqrt(2)*sqrt(x^6 + x^2)*x - 2*8^(1/4)*(x^6 + x^2)^(3/4) + x) 
/(x^5 + 2*x^3 + x)) + 4*2^(3/4)*(x^5 + x)*log((4*2^(1/4)*(x^6 + x^2)^(1/4) 
*x^2 + 2*2^(3/4)*(x^6 + x^2)^(3/4) + sqrt(2)*(x^5 + 2*x^3 + x) + 4*sqrt(x^ 
6 + x^2)*x)/(x^5 - 2*x^3 + x)) - 4*2^(3/4)*(x^5 + x)*log(-(4*2^(1/4)*(x^6 
+ x^2)^(1/4)*x^2 + 2*2^(3/4)*(x^6 + x^2)^(3/4) - sqrt(2)*(x^5 + 2*x^3 + x) 
 - 4*sqrt(x^6 + x^2)*x)/(x^5 - 2*x^3 + x)) - 128*(x^6 + x^2)^(3/4))/(x^5 + 
 x)
 

Sympy [F]

\[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=\int \frac {x^{4}}{\sqrt [4]{x^{2} \left (x^{4} + 1\right )} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} + 1\right ) \left (x^{4} + 1\right )}\, dx \] Input:

integrate(x**4/(x**6+x**2)**(1/4)/(x**8-1),x)
 

Output:

Integral(x**4/((x**2*(x**4 + 1))**(1/4)*(x - 1)*(x + 1)*(x**2 + 1)*(x**4 + 
 1)), x)
 

Maxima [F]

\[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=\int { \frac {x^{4}}{{\left (x^{8} - 1\right )} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate(x^4/(x^6+x^2)^(1/4)/(x^8-1),x, algorithm="maxima")
 

Output:

integrate(x^4/((x^8 - 1)*(x^6 + x^2)^(1/4)), x)
 

Giac [F]

\[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=\int { \frac {x^{4}}{{\left (x^{8} - 1\right )} {\left (x^{6} + x^{2}\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate(x^4/(x^6+x^2)^(1/4)/(x^8-1),x, algorithm="giac")
 

Output:

integrate(x^4/((x^8 - 1)*(x^6 + x^2)^(1/4)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=\int \frac {x^4}{{\left (x^6+x^2\right )}^{1/4}\,\left (x^8-1\right )} \,d x \] Input:

int(x^4/((x^2 + x^6)^(1/4)*(x^8 - 1)),x)
 

Output:

int(x^4/((x^2 + x^6)^(1/4)*(x^8 - 1)), x)
 

Reduce [F]

\[ \int \frac {x^4}{\sqrt [4]{x^2+x^6} \left (-1+x^8\right )} \, dx=\frac {-3 \sqrt {x}\, \left (x^{4}+1\right )^{\frac {5}{4}}-\sqrt {x}\, \left (x^{4}+1\right )^{\frac {1}{4}} x^{4}-\sqrt {x}\, \left (x^{4}+1\right )^{\frac {1}{4}}-2 \sqrt {x^{4}+1}\, \left (\int \frac {\left (x^{4}+1\right )^{\frac {3}{4}}}{\sqrt {x}\, x^{12}+\sqrt {x}\, x^{8}-\sqrt {x}\, x^{4}-\sqrt {x}}d x \right ) x^{4}-2 \sqrt {x^{4}+1}\, \left (\int \frac {\left (x^{4}+1\right )^{\frac {3}{4}}}{\sqrt {x}\, x^{12}+\sqrt {x}\, x^{8}-\sqrt {x}\, x^{4}-\sqrt {x}}d x \right )+3 \sqrt {x^{4}+1}\, \left (\int \frac {\sqrt {x}\, \left (x^{4}+1\right )^{\frac {3}{4}} x^{3}}{x^{12}+x^{8}-x^{4}-1}d x \right ) x^{4}+3 \sqrt {x^{4}+1}\, \left (\int \frac {\sqrt {x}\, \left (x^{4}+1\right )^{\frac {3}{4}} x^{3}}{x^{12}+x^{8}-x^{4}-1}d x \right )}{\sqrt {x^{4}+1}\, \left (x^{4}+1\right )} \] Input:

int(x^4/(x^6+x^2)^(1/4)/(x^8-1),x)
 

Output:

( - 3*sqrt(x)*(x**4 + 1)**(5/4) - sqrt(x)*(x**4 + 1)**(1/4)*x**4 - sqrt(x) 
*(x**4 + 1)**(1/4) - 2*sqrt(x**4 + 1)*int((x**4 + 1)**(3/4)/(sqrt(x)*x**12 
 + sqrt(x)*x**8 - sqrt(x)*x**4 - sqrt(x)),x)*x**4 - 2*sqrt(x**4 + 1)*int(( 
x**4 + 1)**(3/4)/(sqrt(x)*x**12 + sqrt(x)*x**8 - sqrt(x)*x**4 - sqrt(x)),x 
) + 3*sqrt(x**4 + 1)*int((sqrt(x)*(x**4 + 1)**(3/4)*x**3)/(x**12 + x**8 - 
x**4 - 1),x)*x**4 + 3*sqrt(x**4 + 1)*int((sqrt(x)*(x**4 + 1)**(3/4)*x**3)/ 
(x**12 + x**8 - x**4 - 1),x))/(sqrt(x**4 + 1)*(x**4 + 1))