\(\int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx\) [2607]

Optimal result
Mathematica [A] (verified)
Rubi [C] (warning: unable to verify)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 226 \[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=2 \sqrt [4]{x^3+x^4}+\arctan \left (\frac {x}{\sqrt [4]{x^3+x^4}}\right )-\sqrt {2 \left (1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {-\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{x^3+x^4}}\right )+\sqrt {2 \left (-1+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{x^3+x^4}}\right )-\text {arctanh}\left (\frac {x}{\sqrt [4]{x^3+x^4}}\right )+\sqrt {2 \left (1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {-\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{x^3+x^4}}\right )-\sqrt {2 \left (-1+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt {\frac {1}{2}+\frac {\sqrt {5}}{2}} x}{\sqrt [4]{x^3+x^4}}\right ) \] Output:

2*(x^4+x^3)^(1/4)+arctan(x/(x^4+x^3)^(1/4))-(2+2*5^(1/2))^(1/2)*arctan(1/2 
*(-2+2*5^(1/2))^(1/2)*x/(x^4+x^3)^(1/4))+(-2+2*5^(1/2))^(1/2)*arctan(1/2*( 
2+2*5^(1/2))^(1/2)*x/(x^4+x^3)^(1/4))-arctanh(x/(x^4+x^3)^(1/4))+(2+2*5^(1 
/2))^(1/2)*arctanh(1/2*(-2+2*5^(1/2))^(1/2)*x/(x^4+x^3)^(1/4))-(-2+2*5^(1/ 
2))^(1/2)*arctanh(1/2*(2+2*5^(1/2))^(1/2)*x/(x^4+x^3)^(1/4))
 

Mathematica [A] (verified)

Time = 0.77 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.04 \[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=\frac {x^{9/4} (1+x)^{3/4} \left (2 x^{3/4} \sqrt [4]{1+x}+\arctan \left (\sqrt [4]{\frac {x}{1+x}}\right )-\sqrt {2 \left (1+\sqrt {5}\right )} \arctan \left (\sqrt {\frac {1}{2} \left (-1+\sqrt {5}\right )} \sqrt [4]{\frac {x}{1+x}}\right )+\sqrt {2 \left (-1+\sqrt {5}\right )} \arctan \left (\sqrt {\frac {1}{2} \left (1+\sqrt {5}\right )} \sqrt [4]{\frac {x}{1+x}}\right )-\text {arctanh}\left (\sqrt [4]{\frac {x}{1+x}}\right )+\sqrt {2 \left (1+\sqrt {5}\right )} \text {arctanh}\left (\sqrt {\frac {1}{2} \left (-1+\sqrt {5}\right )} \sqrt [4]{\frac {x}{1+x}}\right )-\sqrt {2 \left (-1+\sqrt {5}\right )} \text {arctanh}\left (\sqrt {\frac {1}{2} \left (1+\sqrt {5}\right )} \sqrt [4]{\frac {x}{1+x}}\right )\right )}{\left (x^3 (1+x)\right )^{3/4}} \] Input:

Integrate[((1 + 2*x)*(x^3 + x^4)^(1/4))/(-1 + x + x^2),x]
 

Output:

(x^(9/4)*(1 + x)^(3/4)*(2*x^(3/4)*(1 + x)^(1/4) + ArcTan[(x/(1 + x))^(1/4) 
] - Sqrt[2*(1 + Sqrt[5])]*ArcTan[Sqrt[(-1 + Sqrt[5])/2]*(x/(1 + x))^(1/4)] 
 + Sqrt[2*(-1 + Sqrt[5])]*ArcTan[Sqrt[(1 + Sqrt[5])/2]*(x/(1 + x))^(1/4)] 
- ArcTanh[(x/(1 + x))^(1/4)] + Sqrt[2*(1 + Sqrt[5])]*ArcTanh[Sqrt[(-1 + Sq 
rt[5])/2]*(x/(1 + x))^(1/4)] - Sqrt[2*(-1 + Sqrt[5])]*ArcTanh[Sqrt[(1 + Sq 
rt[5])/2]*(x/(1 + x))^(1/4)]))/(x^3*(1 + x))^(3/4)
 

Rubi [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 1.31 (sec) , antiderivative size = 396, normalized size of antiderivative = 1.75, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2467, 25, 2035, 7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(2 x+1) \sqrt [4]{x^4+x^3}}{x^2+x-1} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [4]{x^4+x^3} \int -\frac {x^{3/4} \sqrt [4]{x+1} (2 x+1)}{-x^2-x+1}dx}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{x^4+x^3} \int \frac {x^{3/4} \sqrt [4]{x+1} (2 x+1)}{-x^2-x+1}dx}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {4 \sqrt [4]{x^4+x^3} \int \frac {x^{3/2} \sqrt [4]{x+1} (2 x+1)}{-x^2-x+1}d\sqrt [4]{x}}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 7279

\(\displaystyle -\frac {4 \sqrt [4]{x^4+x^3} \int \left (\frac {(2-x) \sqrt {x} \sqrt [4]{x+1}}{-x^2-x+1}-2 \sqrt {x} \sqrt [4]{x+1}\right )d\sqrt [4]{x}}{x^{3/4} \sqrt [4]{x+1}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 \sqrt [4]{x^4+x^3} \left (\frac {4 x^{3/4} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{4},1,\frac {7}{4},-x,-\frac {2 x}{1+\sqrt {5}}\right )}{3 \sqrt {5} \left (1+\sqrt {5}\right )}-\frac {4 x^{3/4} \operatorname {AppellF1}\left (\frac {3}{4},1,-\frac {1}{4},\frac {7}{4},-\frac {2 x}{1-\sqrt {5}},-x\right )}{3 \sqrt {5} \left (1-\sqrt {5}\right )}-\frac {1}{4} \arctan \left (\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )+\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \arctan \left (\frac {\sqrt [4]{\frac {2}{3+\sqrt {5}}} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2 \sqrt {5}}+\frac {\sqrt [4]{\frac {1}{2} \left (3-\sqrt {5}\right )} \arctan \left (\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2 \sqrt {5}}+\frac {1}{4} \text {arctanh}\left (\frac {\sqrt [4]{x}}{\sqrt [4]{x+1}}\right )-\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt [4]{\frac {2}{3+\sqrt {5}}} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2 \sqrt {5}}-\frac {\sqrt [4]{\frac {1}{2} \left (3-\sqrt {5}\right )} \text {arctanh}\left (\frac {\sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \sqrt [4]{x}}{\sqrt [4]{x+1}}\right )}{2 \sqrt {5}}-\frac {1}{2} x^{3/4} \sqrt [4]{x+1}\right )}{x^{3/4} \sqrt [4]{x+1}}\)

Input:

Int[((1 + 2*x)*(x^3 + x^4)^(1/4))/(-1 + x + x^2),x]
 

Output:

(-4*(x^3 + x^4)^(1/4)*(-1/2*(x^(3/4)*(1 + x)^(1/4)) + (4*x^(3/4)*AppellF1[ 
3/4, -1/4, 1, 7/4, -x, (-2*x)/(1 + Sqrt[5])])/(3*Sqrt[5]*(1 + Sqrt[5])) - 
(4*x^(3/4)*AppellF1[3/4, 1, -1/4, 7/4, (-2*x)/(1 - Sqrt[5]), -x])/(3*Sqrt[ 
5]*(1 - Sqrt[5])) - ArcTan[x^(1/4)/(1 + x)^(1/4)]/4 + (((3 + Sqrt[5])/2)^( 
1/4)*ArcTan[((2/(3 + Sqrt[5]))^(1/4)*x^(1/4))/(1 + x)^(1/4)])/(2*Sqrt[5]) 
+ (((3 - Sqrt[5])/2)^(1/4)*ArcTan[(((3 + Sqrt[5])/2)^(1/4)*x^(1/4))/(1 + x 
)^(1/4)])/(2*Sqrt[5]) + ArcTanh[x^(1/4)/(1 + x)^(1/4)]/4 - (((3 + Sqrt[5]) 
/2)^(1/4)*ArcTanh[((2/(3 + Sqrt[5]))^(1/4)*x^(1/4))/(1 + x)^(1/4)])/(2*Sqr 
t[5]) - (((3 - Sqrt[5])/2)^(1/4)*ArcTanh[(((3 + Sqrt[5])/2)^(1/4)*x^(1/4)) 
/(1 + x)^(1/4)])/(2*Sqrt[5])))/(x^(3/4)*(1 + x)^(1/4))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
Maple [A] (verified)

Time = 15.66 (sec) , antiderivative size = 205, normalized size of antiderivative = 0.91

method result size
pseudoelliptic \(\operatorname {arctanh}\left (\frac {2 \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x \sqrt {-2+2 \sqrt {5}}}\right ) \sqrt {2+2 \sqrt {5}}+\arctan \left (\frac {2 \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x \sqrt {-2+2 \sqrt {5}}}\right ) \sqrt {2+2 \sqrt {5}}-\arctan \left (\frac {2 \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x \sqrt {2+2 \sqrt {5}}}\right ) \sqrt {-2+2 \sqrt {5}}-\operatorname {arctanh}\left (\frac {2 \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x \sqrt {2+2 \sqrt {5}}}\right ) \sqrt {-2+2 \sqrt {5}}+2 \left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}+\frac {\ln \left (\frac {\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}-x}{x}\right )}{2}-\frac {\ln \left (\frac {x +\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )}{2}-\arctan \left (\frac {\left (x^{3} \left (1+x \right )\right )^{\frac {1}{4}}}{x}\right )\) \(205\)
trager \(\text {Expression too large to display}\) \(2138\)
risch \(\text {Expression too large to display}\) \(3991\)

Input:

int((1+2*x)*(x^4+x^3)^(1/4)/(x^2+x-1),x,method=_RETURNVERBOSE)
 

Output:

arctanh(2*(x^3*(1+x))^(1/4)/x/(-2+2*5^(1/2))^(1/2))*(2+2*5^(1/2))^(1/2)+ar 
ctan(2*(x^3*(1+x))^(1/4)/x/(-2+2*5^(1/2))^(1/2))*(2+2*5^(1/2))^(1/2)-arcta 
n(2*(x^3*(1+x))^(1/4)/x/(2+2*5^(1/2))^(1/2))*(-2+2*5^(1/2))^(1/2)-arctanh( 
2*(x^3*(1+x))^(1/4)/x/(2+2*5^(1/2))^(1/2))*(-2+2*5^(1/2))^(1/2)+2*(x^3*(1+ 
x))^(1/4)+1/2*ln(((x^3*(1+x))^(1/4)-x)/x)-1/2*ln((x+(x^3*(1+x))^(1/4))/x)- 
arctan((x^3*(1+x))^(1/4)/x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 347 vs. \(2 (168) = 336\).

Time = 0.10 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.54 \[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=-2 \, \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} \arctan \left (\frac {{\left (x^{4} + x^{3}\right )}^{\frac {3}{4}} {\left (\sqrt {5} - 1\right )} \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}}}{2 \, {\left (x^{3} + x^{2}\right )}}\right ) + 2 \, \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} \arctan \left (\frac {{\left (x^{4} + x^{3}\right )}^{\frac {3}{4}} {\left (\sqrt {5} + 1\right )} \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}}}{2 \, {\left (x^{3} + x^{2}\right )}}\right ) + \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} \log \left (\frac {{\left (\sqrt {5} x - x\right )} \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} + 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} \log \left (-\frac {{\left (\sqrt {5} x - x\right )} \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} - 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) - \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} \log \left (\frac {{\left (\sqrt {5} x + x\right )} \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} + 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} \log \left (-\frac {{\left (\sqrt {5} x + x\right )} \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} - 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + 2 \, {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}} + \arctan \left (\frac {{\left (x^{4} + x^{3}\right )}^{\frac {3}{4}}}{x^{3} + x^{2}}\right ) - \frac {1}{2} \, \log \left (\frac {x + {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) + \frac {1}{2} \, \log \left (-\frac {x - {\left (x^{4} + x^{3}\right )}^{\frac {1}{4}}}{x}\right ) \] Input:

integrate((1+2*x)*(x^4+x^3)^(1/4)/(x^2+x-1),x, algorithm="fricas")
 

Output:

-2*sqrt(1/2*sqrt(5) + 1/2)*arctan(1/2*(x^4 + x^3)^(3/4)*(sqrt(5) - 1)*sqrt 
(1/2*sqrt(5) + 1/2)/(x^3 + x^2)) + 2*sqrt(1/2*sqrt(5) - 1/2)*arctan(1/2*(x 
^4 + x^3)^(3/4)*(sqrt(5) + 1)*sqrt(1/2*sqrt(5) - 1/2)/(x^3 + x^2)) + sqrt( 
1/2*sqrt(5) + 1/2)*log(((sqrt(5)*x - x)*sqrt(1/2*sqrt(5) + 1/2) + 2*(x^4 + 
 x^3)^(1/4))/x) - sqrt(1/2*sqrt(5) + 1/2)*log(-((sqrt(5)*x - x)*sqrt(1/2*s 
qrt(5) + 1/2) - 2*(x^4 + x^3)^(1/4))/x) - sqrt(1/2*sqrt(5) - 1/2)*log(((sq 
rt(5)*x + x)*sqrt(1/2*sqrt(5) - 1/2) + 2*(x^4 + x^3)^(1/4))/x) + sqrt(1/2* 
sqrt(5) - 1/2)*log(-((sqrt(5)*x + x)*sqrt(1/2*sqrt(5) - 1/2) - 2*(x^4 + x^ 
3)^(1/4))/x) + 2*(x^4 + x^3)^(1/4) + arctan((x^4 + x^3)^(3/4)/(x^3 + x^2)) 
 - 1/2*log((x + (x^4 + x^3)^(1/4))/x) + 1/2*log(-(x - (x^4 + x^3)^(1/4))/x 
)
 

Sympy [F]

\[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=\int \frac {\sqrt [4]{x^{3} \left (x + 1\right )} \left (2 x + 1\right )}{x^{2} + x - 1}\, dx \] Input:

integrate((1+2*x)*(x**4+x**3)**(1/4)/(x**2+x-1),x)
 

Output:

Integral((x**3*(x + 1))**(1/4)*(2*x + 1)/(x**2 + x - 1), x)
 

Maxima [F]

\[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=\int { \frac {{\left (x^{4} + x^{3}\right )}^{\frac {1}{4}} {\left (2 \, x + 1\right )}}{x^{2} + x - 1} \,d x } \] Input:

integrate((1+2*x)*(x^4+x^3)^(1/4)/(x^2+x-1),x, algorithm="maxima")
 

Output:

integrate((x^4 + x^3)^(1/4)*(2*x + 1)/(x^2 + x - 1), x)
 

Giac [A] (verification not implemented)

Time = 0.66 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.00 \[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=-\sqrt {2 \, \sqrt {5} - 2} \arctan \left (\frac {{\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}}{\sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}}}\right ) + \sqrt {2 \, \sqrt {5} + 2} \arctan \left (\frac {{\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}}{\sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}}}\right ) - \frac {1}{2} \, \sqrt {2 \, \sqrt {5} - 2} \log \left (\sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) + \frac {1}{2} \, \sqrt {2 \, \sqrt {5} + 2} \log \left (\sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) + \frac {1}{2} \, \sqrt {2 \, \sqrt {5} - 2} \log \left ({\left | -\sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} \right |}\right ) - \frac {1}{2} \, \sqrt {2 \, \sqrt {5} + 2} \log \left ({\left | -\sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} + {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} \right |}\right ) + 2 \, x {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} - \arctan \left ({\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}}\right ) - \frac {1}{2} \, \log \left ({\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} + 1\right ) + \frac {1}{2} \, \log \left ({\left | {\left (\frac {1}{x} + 1\right )}^{\frac {1}{4}} - 1 \right |}\right ) \] Input:

integrate((1+2*x)*(x^4+x^3)^(1/4)/(x^2+x-1),x, algorithm="giac")
 

Output:

-sqrt(2*sqrt(5) - 2)*arctan((1/x + 1)^(1/4)/sqrt(1/2*sqrt(5) + 1/2)) + sqr 
t(2*sqrt(5) + 2)*arctan((1/x + 1)^(1/4)/sqrt(1/2*sqrt(5) - 1/2)) - 1/2*sqr 
t(2*sqrt(5) - 2)*log(sqrt(1/2*sqrt(5) + 1/2) + (1/x + 1)^(1/4)) + 1/2*sqrt 
(2*sqrt(5) + 2)*log(sqrt(1/2*sqrt(5) - 1/2) + (1/x + 1)^(1/4)) + 1/2*sqrt( 
2*sqrt(5) - 2)*log(abs(-sqrt(1/2*sqrt(5) + 1/2) + (1/x + 1)^(1/4))) - 1/2* 
sqrt(2*sqrt(5) + 2)*log(abs(-sqrt(1/2*sqrt(5) - 1/2) + (1/x + 1)^(1/4))) + 
 2*x*(1/x + 1)^(1/4) - arctan((1/x + 1)^(1/4)) - 1/2*log((1/x + 1)^(1/4) + 
 1) + 1/2*log(abs((1/x + 1)^(1/4) - 1))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=\int \frac {{\left (x^4+x^3\right )}^{1/4}\,\left (2\,x+1\right )}{x^2+x-1} \,d x \] Input:

int(((x^3 + x^4)^(1/4)*(2*x + 1))/(x + x^2 - 1),x)
 

Output:

int(((x^3 + x^4)^(1/4)*(2*x + 1))/(x + x^2 - 1), x)
 

Reduce [F]

\[ \int \frac {(1+2 x) \sqrt [4]{x^3+x^4}}{-1+x+x^2} \, dx=2 x^{\frac {3}{4}} \left (x +1\right )^{\frac {1}{4}}+\frac {3 \left (\int \frac {\left (x +1\right )^{\frac {1}{4}}}{x^{\frac {13}{4}}+2 x^{\frac {9}{4}}-x^{\frac {1}{4}}}d x \right )}{2}-\frac {\left (\int \frac {\left (x +1\right )^{\frac {1}{4}} x^{2}}{x^{\frac {13}{4}}+2 x^{\frac {9}{4}}-x^{\frac {1}{4}}}d x \right )}{2}+\frac {3 \left (\int \frac {\left (x +1\right )^{\frac {1}{4}} x}{x^{\frac {13}{4}}+2 x^{\frac {9}{4}}-x^{\frac {1}{4}}}d x \right )}{2} \] Input:

int((1+2*x)*(x^4+x^3)^(1/4)/(x^2+x-1),x)
 

Output:

(4*x**(3/4)*(x + 1)**(1/4) + 3*int((x + 1)**(1/4)/(x**(1/4)*x**3 + 2*x**(1 
/4)*x**2 - x**(1/4)),x) - int(((x + 1)**(1/4)*x**2)/(x**(1/4)*x**3 + 2*x** 
(1/4)*x**2 - x**(1/4)),x) + 3*int(((x + 1)**(1/4)*x)/(x**(1/4)*x**3 + 2*x* 
*(1/4)*x**2 - x**(1/4)),x))/2