\(\int \frac {x^3}{\sqrt [3]{-x^2+x^3} (-1+x^6)} \, dx\) [2752]

Optimal result
Mathematica [A] (verified)
Rubi [C] (warning: unable to verify)
Maple [N/A] (verified)
Fricas [C] (verification not implemented)
Sympy [N/A]
Maxima [N/A]
Giac [F(-2)]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 24, antiderivative size = 257 \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=-\frac {\left (-x^2+x^3\right )^{2/3}}{2 (-1+x) x}+\frac {\arctan \left (\frac {\sqrt {3} x}{x+2^{2/3} \sqrt [3]{-x^2+x^3}}\right )}{2 \sqrt [3]{2} \sqrt {3}}-\frac {\log \left (-2 x+2^{2/3} \sqrt [3]{-x^2+x^3}\right )}{6 \sqrt [3]{2}}+\frac {\log \left (2 x^2+2^{2/3} x \sqrt [3]{-x^2+x^3}+\sqrt [3]{2} \left (-x^2+x^3\right )^{2/3}\right )}{12 \sqrt [3]{2}}+\frac {1}{6} \text {RootSum}\left [3-3 \text {$\#$1}^3+\text {$\#$1}^6\&,\frac {-\log (x)+\log \left (\sqrt [3]{-x^2+x^3}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]-\frac {1}{6} \text {RootSum}\left [1-\text {$\#$1}^3+\text {$\#$1}^6\&,\frac {-\log (x)+\log \left (\sqrt [3]{-x^2+x^3}-x \text {$\#$1}\right )}{\text {$\#$1}}\&\right ] \] Output:

Unintegrable
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.09 \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=\frac {x^{2/3} \left (-12 \sqrt [3]{x}+2\ 2^{2/3} \sqrt {3} \sqrt [3]{-1+x} \arctan \left (\frac {\sqrt {3} \sqrt [3]{x}}{2^{2/3} \sqrt [3]{-1+x}+\sqrt [3]{x}}\right )-2\ 2^{2/3} \sqrt [3]{-1+x} \log \left (2^{2/3} \sqrt [3]{-1+x}-2 \sqrt [3]{x}\right )+2^{2/3} \sqrt [3]{-1+x} \log \left (\sqrt [3]{2} (-1+x)^{2/3}+2^{2/3} \sqrt [3]{-1+x} \sqrt [3]{x}+2 x^{2/3}\right )+4 \sqrt [3]{-1+x} \text {RootSum}\left [3-3 \text {$\#$1}^3+\text {$\#$1}^6\&,\frac {-\log \left (\sqrt [3]{x}\right )+\log \left (\sqrt [3]{-1+x}-\sqrt [3]{x} \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]-4 \sqrt [3]{-1+x} \text {RootSum}\left [1-\text {$\#$1}^3+\text {$\#$1}^6\&,\frac {-\log \left (\sqrt [3]{x}\right )+\log \left (\sqrt [3]{-1+x}-\sqrt [3]{x} \text {$\#$1}\right )}{\text {$\#$1}}\&\right ]\right )}{24 \sqrt [3]{(-1+x) x^2}} \] Input:

Integrate[x^3/((-x^2 + x^3)^(1/3)*(-1 + x^6)),x]
 

Output:

(x^(2/3)*(-12*x^(1/3) + 2*2^(2/3)*Sqrt[3]*(-1 + x)^(1/3)*ArcTan[(Sqrt[3]*x 
^(1/3))/(2^(2/3)*(-1 + x)^(1/3) + x^(1/3))] - 2*2^(2/3)*(-1 + x)^(1/3)*Log 
[2^(2/3)*(-1 + x)^(1/3) - 2*x^(1/3)] + 2^(2/3)*(-1 + x)^(1/3)*Log[2^(1/3)* 
(-1 + x)^(2/3) + 2^(2/3)*(-1 + x)^(1/3)*x^(1/3) + 2*x^(2/3)] + 4*(-1 + x)^ 
(1/3)*RootSum[3 - 3*#1^3 + #1^6 & , (-Log[x^(1/3)] + Log[(-1 + x)^(1/3) - 
x^(1/3)*#1])/#1 & ] - 4*(-1 + x)^(1/3)*RootSum[1 - #1^3 + #1^6 & , (-Log[x 
^(1/3)] + Log[(-1 + x)^(1/3) - x^(1/3)*#1])/#1 & ]))/(24*((-1 + x)*x^2)^(1 
/3))
 

Rubi [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 2.36 (sec) , antiderivative size = 1274, normalized size of antiderivative = 4.96, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {2467, 25, 2035, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{\sqrt [3]{x^3-x^2} \left (x^6-1\right )} \, dx\)

\(\Big \downarrow \) 2467

\(\displaystyle \frac {\sqrt [3]{x-1} x^{2/3} \int -\frac {x^{7/3}}{\sqrt [3]{x-1} \left (1-x^6\right )}dx}{\sqrt [3]{x^3-x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [3]{x-1} x^{2/3} \int \frac {x^{7/3}}{\sqrt [3]{x-1} \left (1-x^6\right )}dx}{\sqrt [3]{x^3-x^2}}\)

\(\Big \downarrow \) 2035

\(\displaystyle -\frac {3 \sqrt [3]{x-1} x^{2/3} \int \frac {x^3}{\sqrt [3]{x-1} \left (1-x^6\right )}d\sqrt [3]{x}}{\sqrt [3]{x^3-x^2}}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {3 \sqrt [3]{x-1} x^{2/3} \int \left (\frac {\sqrt [3]{x}-2}{18 \left (x^{2/3}-\sqrt [3]{x}+1\right ) \sqrt [3]{x-1}}-\frac {\sqrt [3]{x}}{9 \left (x^{2/3}-1\right ) \sqrt [3]{x-1}}+\frac {\sqrt [3]{x}+2}{18 \left (x^{2/3}+\sqrt [3]{x}+1\right ) \sqrt [3]{x-1}}+\frac {x-2}{6 \sqrt [3]{x-1} \left (x^2-x+1\right )}+\frac {x+2}{6 \sqrt [3]{x-1} \left (x^2+x+1\right )}\right )d\sqrt [3]{x}}{\sqrt [3]{x^3-x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {3 \sqrt [3]{x-1} x^{2/3} \left (-\frac {\arctan \left (\frac {1-\frac {\sqrt [3]{2} \left (1-\sqrt [3]{x}\right )}{\sqrt [3]{x-1}}}{\sqrt {3}}\right )}{18 \sqrt [3]{2} \sqrt {3}}+\frac {\arctan \left (\frac {\frac {2 \sqrt [3]{2} \left (1-\sqrt [3]{x}\right )}{\sqrt [3]{x-1}}+1}{\sqrt {3}}\right )}{18 \sqrt [3]{2} \sqrt {3}}-\frac {\arctan \left (\frac {1-2^{2/3} \sqrt [3]{x-1}}{\sqrt {3}}\right )}{18 \sqrt [3]{2} \sqrt {3}}-\frac {\arctan \left (\frac {\frac {2 \sqrt [3]{2} \sqrt [3]{x}}{\sqrt [3]{x-1}}+1}{\sqrt {3}}\right )}{9 \sqrt [3]{2} \sqrt {3}}+\frac {\sqrt [3]{\frac {i-\sqrt {3}}{3 i-\sqrt {3}}} \arctan \left (\frac {\frac {2 \sqrt [3]{x}}{\sqrt [3]{\frac {i-\sqrt {3}}{3 i-\sqrt {3}}} \sqrt [3]{x-1}}+1}{\sqrt {3}}\right )}{6 \sqrt {3}}-\frac {\sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}} \arctan \left (\frac {\frac {2 \sqrt [3]{x}}{\sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}} \sqrt [3]{x-1}}+1}{\sqrt {3}}\right )}{6 \sqrt {3}}-\frac {\arctan \left (\frac {\frac {2 \sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}} \sqrt [3]{x}}{\sqrt [3]{x-1}}+1}{\sqrt {3}}\right )}{6 \sqrt {3} \sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}}}+\frac {\sqrt [3]{\frac {i+\sqrt {3}}{3 i+\sqrt {3}}} \arctan \left (\frac {\frac {2 \sqrt [3]{x}}{\sqrt [3]{\frac {i+\sqrt {3}}{3 i+\sqrt {3}}} \sqrt [3]{x-1}}+1}{\sqrt {3}}\right )}{6 \sqrt {3}}-\frac {\log \left (1-\frac {\sqrt [3]{2} \left (1-\sqrt [3]{x}\right )}{\sqrt [3]{x-1}}\right )}{54 \sqrt [3]{2}}+\frac {\log \left (\frac {2^{2/3} \left (1-\sqrt [3]{x}\right )^2}{(x-1)^{2/3}}+\frac {\sqrt [3]{2} \left (1-\sqrt [3]{x}\right )}{\sqrt [3]{x-1}}+1\right )}{108 \sqrt [3]{2}}-\frac {\log \left (\sqrt [3]{x-1}+\sqrt [3]{2}\right )}{36 \sqrt [3]{2}}+\frac {\log \left (2^{2/3} \sqrt [3]{x-1}-\sqrt [3]{x}+1\right )}{36 \sqrt [3]{2}}-\frac {\log \left (\left (1-\sqrt [3]{x}\right ) \left (\sqrt [3]{x}+1\right )^2\right )}{108 \sqrt [3]{2}}+\frac {\log \left (\sqrt [3]{2} \sqrt [3]{x}-\sqrt [3]{x-1}\right )}{18 \sqrt [3]{2}}-\frac {1}{12} \sqrt [3]{\frac {i-\sqrt {3}}{3 i-\sqrt {3}}} \log \left (\frac {\sqrt [3]{x}}{\sqrt [3]{\frac {i-\sqrt {3}}{3 i-\sqrt {3}}}}-\sqrt [3]{x-1}\right )+\frac {1}{12} \sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}} \log \left (\frac {\sqrt [3]{x}}{\sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}}}-\sqrt [3]{x-1}\right )+\frac {\log \left (\sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}} \sqrt [3]{x}-\sqrt [3]{x-1}\right )}{12 \sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}}}-\frac {1}{12} \sqrt [3]{\frac {i+\sqrt {3}}{3 i+\sqrt {3}}} \log \left (\frac {\sqrt [3]{x}}{\sqrt [3]{\frac {i+\sqrt {3}}{3 i+\sqrt {3}}}}-\sqrt [3]{x-1}\right )-\frac {\log (x+1)}{108 \sqrt [3]{2}}-\frac {1}{36} \sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}} \log \left (2 x-i \sqrt {3}-1\right )+\frac {1}{36} \sqrt [3]{\frac {i+\sqrt {3}}{3 i+\sqrt {3}}} \log \left (2 x-i \sqrt {3}+1\right )-\frac {\log \left (2 x+i \sqrt {3}-1\right )}{36 \sqrt [3]{-\frac {i-\sqrt {3}}{i+\sqrt {3}}}}+\frac {1}{36} \sqrt [3]{\frac {i-\sqrt {3}}{3 i-\sqrt {3}}} \log \left (2 x+i \sqrt {3}+1\right )+\frac {\sqrt [3]{x}}{6 \sqrt [3]{x-1}}\right )}{\sqrt [3]{x^3-x^2}}\)

Input:

Int[x^3/((-x^2 + x^3)^(1/3)*(-1 + x^6)),x]
 

Output:

(-3*(-1 + x)^(1/3)*x^(2/3)*(x^(1/3)/(6*(-1 + x)^(1/3)) - ArcTan[(1 - (2^(1 
/3)*(1 - x^(1/3)))/(-1 + x)^(1/3))/Sqrt[3]]/(18*2^(1/3)*Sqrt[3]) + ArcTan[ 
(1 + (2*2^(1/3)*(1 - x^(1/3)))/(-1 + x)^(1/3))/Sqrt[3]]/(18*2^(1/3)*Sqrt[3 
]) - ArcTan[(1 - 2^(2/3)*(-1 + x)^(1/3))/Sqrt[3]]/(18*2^(1/3)*Sqrt[3]) - A 
rcTan[(1 + (2*2^(1/3)*x^(1/3))/(-1 + x)^(1/3))/Sqrt[3]]/(9*2^(1/3)*Sqrt[3] 
) + (((I - Sqrt[3])/(3*I - Sqrt[3]))^(1/3)*ArcTan[(1 + (2*x^(1/3))/(((I - 
Sqrt[3])/(3*I - Sqrt[3]))^(1/3)*(-1 + x)^(1/3)))/Sqrt[3]])/(6*Sqrt[3]) - ( 
(-((I - Sqrt[3])/(I + Sqrt[3])))^(1/3)*ArcTan[(1 + (2*x^(1/3))/((-((I - Sq 
rt[3])/(I + Sqrt[3])))^(1/3)*(-1 + x)^(1/3)))/Sqrt[3]])/(6*Sqrt[3]) - ArcT 
an[(1 + (2*(-((I - Sqrt[3])/(I + Sqrt[3])))^(1/3)*x^(1/3))/(-1 + x)^(1/3)) 
/Sqrt[3]]/(6*Sqrt[3]*(-((I - Sqrt[3])/(I + Sqrt[3])))^(1/3)) + (((I + Sqrt 
[3])/(3*I + Sqrt[3]))^(1/3)*ArcTan[(1 + (2*x^(1/3))/(((I + Sqrt[3])/(3*I + 
 Sqrt[3]))^(1/3)*(-1 + x)^(1/3)))/Sqrt[3]])/(6*Sqrt[3]) - Log[1 - (2^(1/3) 
*(1 - x^(1/3)))/(-1 + x)^(1/3)]/(54*2^(1/3)) + Log[1 + (2^(2/3)*(1 - x^(1/ 
3))^2)/(-1 + x)^(2/3) + (2^(1/3)*(1 - x^(1/3)))/(-1 + x)^(1/3)]/(108*2^(1/ 
3)) - Log[2^(1/3) + (-1 + x)^(1/3)]/(36*2^(1/3)) + Log[1 + 2^(2/3)*(-1 + x 
)^(1/3) - x^(1/3)]/(36*2^(1/3)) - Log[(1 - x^(1/3))*(1 + x^(1/3))^2]/(108* 
2^(1/3)) + Log[-(-1 + x)^(1/3) + 2^(1/3)*x^(1/3)]/(18*2^(1/3)) - (((I - Sq 
rt[3])/(3*I - Sqrt[3]))^(1/3)*Log[-(-1 + x)^(1/3) + x^(1/3)/((I - Sqrt[3]) 
/(3*I - Sqrt[3]))^(1/3)])/12 + ((-((I - Sqrt[3])/(I + Sqrt[3])))^(1/3)*...
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2467
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^F 
racPart[p]/(x^(r*FracPart[p])*ExpandToSum[Px/x^r, x]^FracPart[p])   Int[x^( 
p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x] && P 
olyQ[Px, x] &&  !IntegerQ[p] &&  !MonomialQ[Px, x] &&  !PolyQ[Fx, x]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [N/A] (verified)

Time = 14.84 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.92

method result size
pseudoelliptic \(\frac {-2 \sqrt {3}\, 2^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3}\, \left (2^{\frac {2}{3}} \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}+x \right )}{3 x}\right ) \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}-2 \,2^{\frac {2}{3}} \ln \left (\frac {-2^{\frac {1}{3}} x +\left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}}{x}\right ) \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}+2^{\frac {2}{3}} \ln \left (\frac {2^{\frac {2}{3}} x^{2}+2^{\frac {1}{3}} \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}} x +\left (\left (-1+x \right ) x^{2}\right )^{\frac {2}{3}}}{x^{2}}\right ) \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}+4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}-3 \textit {\_Z}^{3}+3\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}}{x}\right )}{\textit {\_R}}\right ) \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}-4 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}-\textit {\_Z}^{3}+1\right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}}{x}\right )}{\textit {\_R}}\right ) \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}-12 x}{24 \left (\left (-1+x \right ) x^{2}\right )^{\frac {1}{3}}}\) \(237\)
trager \(\text {Expression too large to display}\) \(14316\)

Input:

int(x^3/(x^3-x^2)^(1/3)/(x^6-1),x,method=_RETURNVERBOSE)
 

Output:

1/24*(-2*3^(1/2)*2^(2/3)*arctan(1/3*3^(1/2)*(2^(2/3)*((-1+x)*x^2)^(1/3)+x) 
/x)*((-1+x)*x^2)^(1/3)-2*2^(2/3)*ln((-2^(1/3)*x+((-1+x)*x^2)^(1/3))/x)*((- 
1+x)*x^2)^(1/3)+2^(2/3)*ln((2^(2/3)*x^2+2^(1/3)*((-1+x)*x^2)^(1/3)*x+((-1+ 
x)*x^2)^(2/3))/x^2)*((-1+x)*x^2)^(1/3)+4*sum(ln((-_R*x+((-1+x)*x^2)^(1/3)) 
/x)/_R,_R=RootOf(_Z^6-3*_Z^3+3))*((-1+x)*x^2)^(1/3)-4*sum(ln((-_R*x+((-1+x 
)*x^2)^(1/3))/x)/_R,_R=RootOf(_Z^6-_Z^3+1))*((-1+x)*x^2)^(1/3)-12*x)/((-1+ 
x)*x^2)^(1/3)
 

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.10 (sec) , antiderivative size = 1029, normalized size of antiderivative = 4.00 \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=\text {Too large to display} \] Input:

integrate(x^3/(x^3-x^2)^(1/3)/(x^6-1),x, algorithm="fricas")
 

Output:

-1/24*(12*2^(1/6)*sqrt(1/6)*(x^2 - x)*arctan(2^(1/6)*sqrt(1/6)*(2^(1/3)*x 
+ 2*(x^3 - x^2)^(1/3))/x) + 2*2^(2/3)*(x^2 - x)*log(-(2^(1/3)*x - (x^3 - x 
^2)^(1/3))/x) - 2^(2/3)*(x^2 - x)*log((2^(2/3)*x^2 + 2^(1/3)*(x^3 - x^2)^( 
1/3)*x + (x^3 - x^2)^(2/3))/x^2) + 2*(x^2 - sqrt(-3)*(x^2 - x) - x)*(3/2*s 
qrt(-1/3) - 1/2)^(1/3)*log(((3*sqrt(-1/3)*(sqrt(-3)*x + x) + sqrt(-3)*x + 
x)*(3/2*sqrt(-1/3) - 1/2)^(2/3) + 4*(x^3 - x^2)^(1/3))/x) + 2*(x^2 + sqrt( 
-3)*(x^2 - x) - x)*(3/2*sqrt(-1/3) - 1/2)^(1/3)*log(-((3*sqrt(-1/3)*(sqrt( 
-3)*x - x) + sqrt(-3)*x - x)*(3/2*sqrt(-1/3) - 1/2)^(2/3) - 4*(x^3 - x^2)^ 
(1/3))/x) - 4*(x^2 - x)*(3/2*sqrt(-1/3) - 1/2)^(1/3)*log(-((3*sqrt(-1/3)*x 
 + x)*(3/2*sqrt(-1/3) - 1/2)^(2/3) - 2*(x^3 - x^2)^(1/3))/x) + 2*(x^2 - sq 
rt(-3)*(x^2 - x) - x)*(1/2*sqrt(-1/3) + 1/2)^(1/3)*log(-(3*(sqrt(-1/3)*(sq 
rt(-3)*x + x) - sqrt(-3)*x - x)*(1/2*sqrt(-1/3) + 1/2)^(2/3) - 4*(x^3 - x^ 
2)^(1/3))/x) + 2*(x^2 + sqrt(-3)*(x^2 - x) - x)*(1/2*sqrt(-1/3) + 1/2)^(1/ 
3)*log((3*(sqrt(-1/3)*(sqrt(-3)*x - x) - sqrt(-3)*x + x)*(1/2*sqrt(-1/3) + 
 1/2)^(2/3) + 4*(x^3 - x^2)^(1/3))/x) - 4*(x^2 - x)*(1/2*sqrt(-1/3) + 1/2) 
^(1/3)*log((3*(sqrt(-1/3)*x - x)*(1/2*sqrt(-1/3) + 1/2)^(2/3) + 2*(x^3 - x 
^2)^(1/3))/x) + 2*(x^2 - sqrt(-3)*(x^2 - x) - x)*(-1/2*sqrt(-1/3) + 1/2)^( 
1/3)*log((3*(sqrt(-1/3)*(sqrt(-3)*x + x) + sqrt(-3)*x + x)*(-1/2*sqrt(-1/3 
) + 1/2)^(2/3) + 4*(x^3 - x^2)^(1/3))/x) + 2*(x^2 + sqrt(-3)*(x^2 - x) - x 
)*(-1/2*sqrt(-1/3) + 1/2)^(1/3)*log(-(3*(sqrt(-1/3)*(sqrt(-3)*x - x) + ...
 

Sympy [N/A]

Not integrable

Time = 0.77 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.13 \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=\int \frac {x^{3}}{\sqrt [3]{x^{2} \left (x - 1\right )} \left (x - 1\right ) \left (x + 1\right ) \left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )}\, dx \] Input:

integrate(x**3/(x**3-x**2)**(1/3)/(x**6-1),x)
 

Output:

Integral(x**3/((x**2*(x - 1))**(1/3)*(x - 1)*(x + 1)*(x**2 - x + 1)*(x**2 
+ x + 1)), x)
 

Maxima [N/A]

Not integrable

Time = 0.16 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.09 \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=\int { \frac {x^{3}}{{\left (x^{6} - 1\right )} {\left (x^{3} - x^{2}\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(x^3/(x^3-x^2)^(1/3)/(x^6-1),x, algorithm="maxima")
 

Output:

integrate(x^3/((x^6 - 1)*(x^3 - x^2)^(1/3)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^3/(x^3-x^2)^(1/3)/(x^6-1),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:proot error [1,0,0,1,0,0,1]proot er 
ror [1,0,0,-1,0,0,1]Invalid _EXT in replace_ext Error: Bad Argument Valuep 
root erro
 

Mupad [N/A]

Not integrable

Time = 9.36 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.09 \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=\int \frac {x^3}{\left (x^6-1\right )\,{\left (x^3-x^2\right )}^{1/3}} \,d x \] Input:

int(x^3/((x^6 - 1)*(x^3 - x^2)^(1/3)),x)
 

Output:

int(x^3/((x^6 - 1)*(x^3 - x^2)^(1/3)), x)
                                                                                    
                                                                                    
 

Reduce [N/A]

Not integrable

Time = 0.38 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.11 \[ \int \frac {x^3}{\sqrt [3]{-x^2+x^3} \left (-1+x^6\right )} \, dx=\int \frac {x^{3}}{x^{\frac {20}{3}} \left (x -1\right )^{\frac {1}{3}}-x^{\frac {2}{3}} \left (x -1\right )^{\frac {1}{3}}}d x \] Input:

int(x^3/(x^3-x^2)^(1/3)/(x^6-1),x)
 

Output:

int(x**3/(x**(2/3)*(x - 1)**(1/3)*x**6 - x**(2/3)*(x - 1)**(1/3)),x)