\(\int \frac {x^8}{\sqrt {-b^4+a^4 x^4} (-b^{16}+a^{16} x^{16})} \, dx\) [2864]

Optimal result
Mathematica [C] (verified)
Rubi [C] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 303 \[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx=-\frac {x}{8 a^8 b^8 \sqrt {-b^4+a^4 x^4}}-\frac {\arctan \left (\frac {2^{3/4} a b x \sqrt {-b^4+a^4 x^4}}{b^4+\sqrt {2} a^2 b^2 x^2-a^4 x^4}\right )}{8\ 2^{3/4} a^9 b^9}-\frac {\arctan \left (\frac {\frac {b^3}{2 a}+a b x^2-\frac {a^3 x^4}{2 b}}{x \sqrt {-b^4+a^4 x^4}}\right )}{32 a^9 b^9}+\frac {\text {arctanh}\left (\frac {\frac {b^3}{2 a}-a b x^2-\frac {a^3 x^4}{2 b}}{x \sqrt {-b^4+a^4 x^4}}\right )}{32 a^9 b^9}-\frac {\text {arctanh}\left (\frac {\frac {b^3}{2^{3/4} a}-\frac {a b x^2}{\sqrt [4]{2}}-\frac {a^3 x^4}{2^{3/4} b}}{x \sqrt {-b^4+a^4 x^4}}\right )}{8\ 2^{3/4} a^9 b^9} \] Output:

-1/8*x/a^8/b^8/(a^4*x^4-b^4)^(1/2)-1/16*arctan(2^(3/4)*a*b*x*(a^4*x^4-b^4) 
^(1/2)/(b^4+2^(1/2)*a^2*b^2*x^2-a^4*x^4))*2^(1/4)/a^9/b^9-1/32*arctan((1/2 
*b^3/a+a*b*x^2-1/2*a^3*x^4/b)/x/(a^4*x^4-b^4)^(1/2))/a^9/b^9+1/32*arctanh( 
(1/2*b^3/a-a*b*x^2-1/2*a^3*x^4/b)/x/(a^4*x^4-b^4)^(1/2))/a^9/b^9-1/16*arct 
anh((1/2*b^3*2^(1/4)/a-1/2*a*b*x^2*2^(3/4)-1/2*a^3*x^4*2^(1/4)/b)/x/(a^4*x 
^4-b^4)^(1/2))*2^(1/4)/a^9/b^9
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 2.64 (sec) , antiderivative size = 594, normalized size of antiderivative = 1.96 \[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx=-\frac {\frac {4 a b x}{\sqrt {-b^4+a^4 x^4}}+(2-2 i) \arctan \left (\frac {(1+i) a b x}{i b^2+a^2 x^2+\sqrt {-b^4+a^4 x^4}}\right )+(1+i) \arctan \left (\frac {i b^4+(1-i) a b^3 x-(1+i) a^3 b x^3-i a^4 x^4+\left (b^2-(1+i) a b x-i a^2 x^2\right ) \sqrt {-b^4+a^4 x^4}}{i b^4-(1-i) a b^3 x+(1+i) a^3 b x^3-i a^4 x^4+\left (b^2+(1+i) a b x-i a^2 x^2\right ) \sqrt {-b^4+a^4 x^4}}\right )-2 a b \text {RootSum}\left [16 a^8 b^8+32 i a^6 b^6 \text {$\#$1}^2+8 a^4 b^4 \text {$\#$1}^4-8 i a^2 b^2 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {-8 a^6 b^6 \log (x)+8 a^6 b^6 \log \left (i b^2+a^2 x^2+\sqrt {-b^4+a^4 x^4}-x \text {$\#$1}\right )-4 i a^4 b^4 \log (x) \text {$\#$1}^2+4 i a^4 b^4 \log \left (i b^2+a^2 x^2+\sqrt {-b^4+a^4 x^4}-x \text {$\#$1}\right ) \text {$\#$1}^2-2 a^2 b^2 \log (x) \text {$\#$1}^4+2 a^2 b^2 \log \left (i b^2+a^2 x^2+\sqrt {-b^4+a^4 x^4}-x \text {$\#$1}\right ) \text {$\#$1}^4-i \log (x) \text {$\#$1}^6+i \log \left (i b^2+a^2 x^2+\sqrt {-b^4+a^4 x^4}-x \text {$\#$1}\right ) \text {$\#$1}^6}{8 a^6 b^6 \text {$\#$1}-4 i a^4 b^4 \text {$\#$1}^3-6 a^2 b^2 \text {$\#$1}^5-i \text {$\#$1}^7}\&\right ]}{32 a^9 b^9} \] Input:

Integrate[x^8/(Sqrt[-b^4 + a^4*x^4]*(-b^16 + a^16*x^16)),x]
 

Output:

-1/32*((4*a*b*x)/Sqrt[-b^4 + a^4*x^4] + (2 - 2*I)*ArcTan[((1 + I)*a*b*x)/( 
I*b^2 + a^2*x^2 + Sqrt[-b^4 + a^4*x^4])] + (1 + I)*ArcTan[(I*b^4 + (1 - I) 
*a*b^3*x - (1 + I)*a^3*b*x^3 - I*a^4*x^4 + (b^2 - (1 + I)*a*b*x - I*a^2*x^ 
2)*Sqrt[-b^4 + a^4*x^4])/(I*b^4 - (1 - I)*a*b^3*x + (1 + I)*a^3*b*x^3 - I* 
a^4*x^4 + (b^2 + (1 + I)*a*b*x - I*a^2*x^2)*Sqrt[-b^4 + a^4*x^4])] - 2*a*b 
*RootSum[16*a^8*b^8 + (32*I)*a^6*b^6*#1^2 + 8*a^4*b^4*#1^4 - (8*I)*a^2*b^2 
*#1^6 + #1^8 & , (-8*a^6*b^6*Log[x] + 8*a^6*b^6*Log[I*b^2 + a^2*x^2 + Sqrt 
[-b^4 + a^4*x^4] - x*#1] - (4*I)*a^4*b^4*Log[x]*#1^2 + (4*I)*a^4*b^4*Log[I 
*b^2 + a^2*x^2 + Sqrt[-b^4 + a^4*x^4] - x*#1]*#1^2 - 2*a^2*b^2*Log[x]*#1^4 
 + 2*a^2*b^2*Log[I*b^2 + a^2*x^2 + Sqrt[-b^4 + a^4*x^4] - x*#1]*#1^4 - I*L 
og[x]*#1^6 + I*Log[I*b^2 + a^2*x^2 + Sqrt[-b^4 + a^4*x^4] - x*#1]*#1^6)/(8 
*a^6*b^6*#1 - (4*I)*a^4*b^4*#1^3 - 6*a^2*b^2*#1^5 - I*#1^7) & ])/(a^9*b^9)
 

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 1.54 (sec) , antiderivative size = 522, normalized size of antiderivative = 1.72, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8}{\sqrt {a^4 x^4-b^4} \left (a^{16} x^{16}-b^{16}\right )} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (-\frac {1}{4 a^8 b^4 \left (a^4 x^4+b^4\right ) \sqrt {a^4 x^4-b^4}}+\frac {1}{2 a^8 \left (a^8 x^8+b^8\right ) \sqrt {a^4 x^4-b^4}}+\frac {1}{8 a^8 b^6 \left (a^2 x^2-b^2\right ) \sqrt {a^4 x^4-b^4}}-\frac {1}{8 a^8 b^6 \left (a^2 x^2+b^2\right ) \sqrt {a^4 x^4-b^4}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{-a^4} b x}{\sqrt {a^4 x^4-b^4}}\right )}{16 \sqrt {2} \left (-a^4\right )^{9/4} b^9}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{-a^4} b x}{\sqrt {a^4 x^4-b^4}}\right )}{16 \sqrt {2} \left (-a^4\right )^{9/4} b^9}-\frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticF}\left (\arcsin \left (\frac {a x}{b}\right ),-1\right )}{4 a^9 b^7 \sqrt {a^4 x^4-b^4}}-\frac {x \left (b^2-a^2 x^2\right )}{16 a^8 b^{10} \sqrt {a^4 x^4-b^4}}-\frac {x \left (a^2 x^2+b^2\right )}{16 a^8 b^{10} \sqrt {a^4 x^4-b^4}}+\frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticPi}\left (\frac {a^6}{\left (-a^8\right )^{3/4}},\arcsin \left (\frac {a x}{b}\right ),-1\right )}{8 a^9 b^7 \sqrt {a^4 x^4-b^4}}+\frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticPi}\left (\frac {\sqrt [4]{-a^8}}{a^2},\arcsin \left (\frac {a x}{b}\right ),-1\right )}{8 a^9 b^7 \sqrt {a^4 x^4-b^4}}+\frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticPi}\left (-\frac {\sqrt {-\sqrt {-a^8}}}{a^2},\arcsin \left (\frac {a x}{b}\right ),-1\right )}{8 a^9 b^7 \sqrt {a^4 x^4-b^4}}+\frac {\sqrt {1-\frac {a^4 x^4}{b^4}} \operatorname {EllipticPi}\left (\frac {\sqrt {-\sqrt {-a^8}}}{a^2},\arcsin \left (\frac {a x}{b}\right ),-1\right )}{8 a^9 b^7 \sqrt {a^4 x^4-b^4}}\)

Input:

Int[x^8/(Sqrt[-b^4 + a^4*x^4]*(-b^16 + a^16*x^16)),x]
 

Output:

-1/16*(x*(b^2 - a^2*x^2))/(a^8*b^10*Sqrt[-b^4 + a^4*x^4]) - (x*(b^2 + a^2* 
x^2))/(16*a^8*b^10*Sqrt[-b^4 + a^4*x^4]) - ArcTan[(Sqrt[2]*(-a^4)^(1/4)*b* 
x)/Sqrt[-b^4 + a^4*x^4]]/(16*Sqrt[2]*(-a^4)^(9/4)*b^9) - ArcTanh[(Sqrt[2]* 
(-a^4)^(1/4)*b*x)/Sqrt[-b^4 + a^4*x^4]]/(16*Sqrt[2]*(-a^4)^(9/4)*b^9) - (S 
qrt[1 - (a^4*x^4)/b^4]*EllipticF[ArcSin[(a*x)/b], -1])/(4*a^9*b^7*Sqrt[-b^ 
4 + a^4*x^4]) + (Sqrt[1 - (a^4*x^4)/b^4]*EllipticPi[a^6/(-a^8)^(3/4), ArcS 
in[(a*x)/b], -1])/(8*a^9*b^7*Sqrt[-b^4 + a^4*x^4]) + (Sqrt[1 - (a^4*x^4)/b 
^4]*EllipticPi[(-a^8)^(1/4)/a^2, ArcSin[(a*x)/b], -1])/(8*a^9*b^7*Sqrt[-b^ 
4 + a^4*x^4]) + (Sqrt[1 - (a^4*x^4)/b^4]*EllipticPi[-(Sqrt[-Sqrt[-a^8]]/a^ 
2), ArcSin[(a*x)/b], -1])/(8*a^9*b^7*Sqrt[-b^4 + a^4*x^4]) + (Sqrt[1 - (a^ 
4*x^4)/b^4]*EllipticPi[Sqrt[-Sqrt[-a^8]]/a^2, ArcSin[(a*x)/b], -1])/(8*a^9 
*b^7*Sqrt[-b^4 + a^4*x^4])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [A] (verified)

Time = 3.52 (sec) , antiderivative size = 492, normalized size of antiderivative = 1.62

method result size
elliptic \(\frac {\left (-\frac {\ln \left (\frac {\frac {a^{4} x^{4}-b^{4}}{2 x^{2}}-\frac {\sqrt {\sqrt {2}\, \sqrt {a^{4} b^{4}}}\, \sqrt {a^{4} x^{4}-b^{4}}\, \sqrt {2}}{2 x}+\frac {\sqrt {2}\, \sqrt {a^{4} b^{4}}}{2}}{\frac {a^{4} x^{4}-b^{4}}{2 x^{2}}+\frac {\sqrt {\sqrt {2}\, \sqrt {a^{4} b^{4}}}\, \sqrt {a^{4} x^{4}-b^{4}}\, \sqrt {2}}{2 x}+\frac {\sqrt {2}\, \sqrt {a^{4} b^{4}}}{2}}\right )+2 \arctan \left (\frac {\sqrt {a^{4} x^{4}-b^{4}}\, \sqrt {2}}{\sqrt {\sqrt {2}\, \sqrt {a^{4} b^{4}}}\, x}+1\right )+2 \arctan \left (\frac {\sqrt {a^{4} x^{4}-b^{4}}\, \sqrt {2}}{\sqrt {\sqrt {2}\, \sqrt {a^{4} b^{4}}}\, x}-1\right )}{16 a^{8} b^{8} \sqrt {\sqrt {2}\, \sqrt {a^{4} b^{4}}}}+\frac {\sqrt {2}\, \left (\ln \left (\frac {\frac {a^{4} x^{4}-b^{4}}{2 x^{2}}-\frac {\left (a^{4} b^{4}\right )^{\frac {1}{4}} \sqrt {a^{4} x^{4}-b^{4}}}{x}+\sqrt {a^{4} b^{4}}}{\frac {a^{4} x^{4}-b^{4}}{2 x^{2}}+\frac {\left (a^{4} b^{4}\right )^{\frac {1}{4}} \sqrt {a^{4} x^{4}-b^{4}}}{x}+\sqrt {a^{4} b^{4}}}\right )+2 \arctan \left (\frac {\sqrt {a^{4} x^{4}-b^{4}}}{\left (a^{4} b^{4}\right )^{\frac {1}{4}} x}+1\right )+2 \arctan \left (\frac {\sqrt {a^{4} x^{4}-b^{4}}}{\left (a^{4} b^{4}\right )^{\frac {1}{4}} x}-1\right )\right )}{64 a^{8} b^{8} \left (a^{4} b^{4}\right )^{\frac {1}{4}}}-\frac {\sqrt {2}\, x}{8 a^{8} b^{8} \sqrt {a^{4} x^{4}-b^{4}}}\right ) \sqrt {2}}{2}\) \(492\)
pseudoelliptic \(\frac {2 \left (a^{4} x^{4}-b^{4}\right ) \sqrt {i a^{2} b^{2}}\, \sqrt {-i a^{2} b^{2}}\, \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (16 b^{8} a^{8}+32 i a^{6} b^{6} \textit {\_Z}^{2}+8 b^{4} \textit {\_Z}^{4} a^{4}-8 i a^{2} b^{2} \textit {\_Z}^{6}+\textit {\_Z}^{8}\right )}{\sum }\frac {\ln \left (\frac {-\operatorname {csgn}\left (a^{2}\right ) a^{2} x^{2}-i \operatorname {csgn}\left (a^{2}\right ) b^{2}-\textit {\_R} x +\sqrt {a^{4} x^{4}-b^{4}}}{x}\right ) \left (8 a^{6} b^{6}+4 i a^{4} b^{4} \textit {\_R}^{2}+2 a^{2} b^{2} \textit {\_R}^{4}+i \textit {\_R}^{6}\right )}{\textit {\_R} \left (-8 a^{6} b^{6}+4 i a^{4} b^{4} \textit {\_R}^{2}+6 a^{2} b^{2} \textit {\_R}^{4}+i \textit {\_R}^{6}\right )}\right )+\frac {\sqrt {-i a^{2} b^{2}}\, \sqrt {2}\, \left (a^{4} x^{4}-b^{4}\right ) \ln \left (\frac {2 \left (\frac {\sqrt {2}\, \sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}}{2}-\sqrt {i a^{2} b^{2}}\, \left (a^{2} x^{2}+i b^{2}\right )-i a^{2} b^{2} x \right ) a^{2}}{a^{2} x^{2}+i b^{2}+2 \sqrt {i a^{2} b^{2}}\, x}\right )}{2}+\frac {\sqrt {-i a^{2} b^{2}}\, \sqrt {2}\, \left (a^{4} x^{4}-b^{4}\right ) \ln \left (\frac {2 a^{2} \left (\frac {\sqrt {2}\, \sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}}{2}+\sqrt {i a^{2} b^{2}}\, \left (a^{2} x^{2}+i b^{2}\right )-i a^{2} b^{2} x \right )}{a^{2} x^{2}+i b^{2}-2 \sqrt {i a^{2} b^{2}}\, x}\right )}{2}+\sqrt {i a^{2} b^{2}}\, \sqrt {2}\, \left (a^{4} x^{4}-b^{4}\right ) \ln \left (\frac {a^{2} \left (2 a^{2} b^{2} x +i \sqrt {2}\, \sqrt {-i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\right )}{i a^{2} x^{2}-b^{2}}\right )+4 \sqrt {-i a^{2} b^{2}}\, \sqrt {i a^{2} b^{2}}\, \sqrt {a^{4} x^{4}-b^{4}}\, x +\ln \left (2\right ) \sqrt {2}\, \left (a x -b \right ) \left (a x +b \right ) \left (a^{2} x^{2}+b^{2}\right ) \left (\sqrt {i a^{2} b^{2}}+\sqrt {-i a^{2} b^{2}}\right )}{16 \left (-a x +b \right ) \sqrt {-i a^{2} b^{2}}\, \sqrt {i a^{2} b^{2}}\, a^{6} \left (a x +b \right ) b^{6} \left (i a x +b \right ) \left (2 \sqrt {i a^{2} b^{2}}+\left (1+i\right ) a b \right ) \left (a x +i b \right ) \left (-2 \sqrt {i a^{2} b^{2}}+\left (1+i\right ) a b \right )}\) \(778\)
default \(\text {Expression too large to display}\) \(1130\)

Input:

int(x^8/(a^4*x^4-b^4)^(1/2)/(a^16*x^16-b^16),x,method=_RETURNVERBOSE)
 

Output:

1/2*(-1/16/a^8/b^8/(2^(1/2)*(a^4*b^4)^(1/2))^(1/2)*(ln((1/2*(a^4*x^4-b^4)/ 
x^2-1/2*(2^(1/2)*(a^4*b^4)^(1/2))^(1/2)*(a^4*x^4-b^4)^(1/2)*2^(1/2)/x+1/2* 
2^(1/2)*(a^4*b^4)^(1/2))/(1/2*(a^4*x^4-b^4)/x^2+1/2*(2^(1/2)*(a^4*b^4)^(1/ 
2))^(1/2)*(a^4*x^4-b^4)^(1/2)*2^(1/2)/x+1/2*2^(1/2)*(a^4*b^4)^(1/2)))+2*ar 
ctan(1/(2^(1/2)*(a^4*b^4)^(1/2))^(1/2)*(a^4*x^4-b^4)^(1/2)*2^(1/2)/x+1)+2* 
arctan(1/(2^(1/2)*(a^4*b^4)^(1/2))^(1/2)*(a^4*x^4-b^4)^(1/2)*2^(1/2)/x-1)) 
+1/64/a^8/b^8/(a^4*b^4)^(1/4)*2^(1/2)*(ln((1/2*(a^4*x^4-b^4)/x^2-(a^4*b^4) 
^(1/4)*(a^4*x^4-b^4)^(1/2)/x+(a^4*b^4)^(1/2))/(1/2*(a^4*x^4-b^4)/x^2+(a^4* 
b^4)^(1/4)*(a^4*x^4-b^4)^(1/2)/x+(a^4*b^4)^(1/2)))+2*arctan(1/(a^4*b^4)^(1 
/4)*(a^4*x^4-b^4)^(1/2)/x+1)+2*arctan(1/(a^4*b^4)^(1/4)*(a^4*x^4-b^4)^(1/2 
)/x-1))-1/8/a^8/b^8/(a^4*x^4-b^4)^(1/2)*2^(1/2)*x)*2^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 882 vs. \(2 (265) = 530\).

Time = 45.04 (sec) , antiderivative size = 882, normalized size of antiderivative = 2.91 \[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx =\text {Too large to display} \] Input:

integrate(x^8/(a^4*x^4-b^4)^(1/2)/(a^16*x^16-b^16),x, algorithm="fricas")
 

Output:

-1/256*(32*sqrt(a^4*x^4 - b^4)*a*b*x - 2*8^(3/4)*(a^4*x^4 - b^4)*arctan((a 
^16*x^16 + 2*a^8*b^8*x^8 + b^16 + 4*sqrt(2)*(a^14*b^2*x^14 - a^10*b^6*x^10 
 + a^6*b^10*x^6 - a^2*b^14*x^2) + sqrt(a^4*x^4 - b^4)*(8^(3/4)*(3*a^11*b^3 
*x^11 - 8*a^7*b^7*x^7 + 3*a^3*b^11*x^3) + 2*8^(1/4)*(a^13*b*x^13 - 9*a^9*b 
^5*x^9 + 9*a^5*b^9*x^5 - a*b^13*x)))/(a^16*x^16 - 32*a^12*b^4*x^12 + 66*a^ 
8*b^8*x^8 - 32*a^4*b^12*x^4 + b^16)) - 2*8^(3/4)*(a^4*x^4 - b^4)*arctan(-( 
a^16*x^16 + 2*a^8*b^8*x^8 + b^16 + 4*sqrt(2)*(a^14*b^2*x^14 - a^10*b^6*x^1 
0 + a^6*b^10*x^6 - a^2*b^14*x^2) - sqrt(a^4*x^4 - b^4)*(8^(3/4)*(3*a^11*b^ 
3*x^11 - 8*a^7*b^7*x^7 + 3*a^3*b^11*x^3) + 2*8^(1/4)*(a^13*b*x^13 - 9*a^9* 
b^5*x^9 + 9*a^5*b^9*x^5 - a*b^13*x)))/(a^16*x^16 - 32*a^12*b^4*x^12 + 66*a 
^8*b^8*x^8 - 32*a^4*b^12*x^4 + b^16)) - 8^(3/4)*(a^4*x^4 - b^4)*log(2*(8*a 
^6*b^2*x^6 - 8*a^2*b^6*x^2 + sqrt(2)*(a^8*x^8 + b^8) + (4*8^(1/4)*a^3*b^3* 
x^3 + 8^(3/4)*(a^5*b*x^5 - a*b^5*x))*sqrt(a^4*x^4 - b^4))/(a^8*x^8 + b^8)) 
 + 8^(3/4)*(a^4*x^4 - b^4)*log(2*(8*a^6*b^2*x^6 - 8*a^2*b^6*x^2 + sqrt(2)* 
(a^8*x^8 + b^8) - (4*8^(1/4)*a^3*b^3*x^3 + 8^(3/4)*(a^5*b*x^5 - a*b^5*x))* 
sqrt(a^4*x^4 - b^4))/(a^8*x^8 + b^8)) - 16*(a^4*x^4 - b^4)*arctan(sqrt(a^4 
*x^4 - b^4)*a*x/(a^2*b*x^2 + b^3)) - 8*(a^4*x^4 - b^4)*log((a^4*x^4 + 2*a^ 
2*b^2*x^2 - b^4 - 2*sqrt(a^4*x^4 - b^4)*a*b*x)/(a^4*x^4 + b^4)))/(a^13*b^9 
*x^4 - a^9*b^13)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx=\text {Timed out} \] Input:

integrate(x**8/(a**4*x**4-b**4)**(1/2)/(a**16*x**16-b**16),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx=\int { \frac {x^{8}}{{\left (a^{16} x^{16} - b^{16}\right )} \sqrt {a^{4} x^{4} - b^{4}}} \,d x } \] Input:

integrate(x^8/(a^4*x^4-b^4)^(1/2)/(a^16*x^16-b^16),x, algorithm="maxima")
 

Output:

integrate(x^8/((a^16*x^16 - b^16)*sqrt(a^4*x^4 - b^4)), x)
 

Giac [F]

\[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx=\int { \frac {x^{8}}{{\left (a^{16} x^{16} - b^{16}\right )} \sqrt {a^{4} x^{4} - b^{4}}} \,d x } \] Input:

integrate(x^8/(a^4*x^4-b^4)^(1/2)/(a^16*x^16-b^16),x, algorithm="giac")
 

Output:

integrate(x^8/((a^16*x^16 - b^16)*sqrt(a^4*x^4 - b^4)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx=-\int \frac {x^8}{\sqrt {a^4\,x^4-b^4}\,\left (b^{16}-a^{16}\,x^{16}\right )} \,d x \] Input:

int(-x^8/((a^4*x^4 - b^4)^(1/2)*(b^16 - a^16*x^16)),x)
 

Output:

-int(x^8/((a^4*x^4 - b^4)^(1/2)*(b^16 - a^16*x^16)), x)
 

Reduce [F]

\[ \int \frac {x^8}{\sqrt {-b^4+a^4 x^4} \left (-b^{16}+a^{16} x^{16}\right )} \, dx=\int \frac {\sqrt {a^{4} x^{4}-b^{4}}\, x^{8}}{a^{20} x^{20}-a^{16} b^{4} x^{16}-a^{4} b^{16} x^{4}+b^{20}}d x \] Input:

int(x^8/(a^4*x^4-b^4)^(1/2)/(a^16*x^16-b^16),x)
 

Output:

int((sqrt(a**4*x**4 - b**4)*x**8)/(a**20*x**20 - a**16*b**4*x**16 - a**4*b 
**16*x**4 + b**20),x)