\(\int \frac {(1+x^2) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{(1-x^2)^2} \, dx\) [2905]

Optimal result
Mathematica [B] (verified)
Rubi [F]
Maple [N/A]
Fricas [C] (verification not implemented)
Sympy [N/A]
Maxima [N/A]
Giac [F(-1)]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 51, antiderivative size = 323 \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=-\frac {x \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{-1+x^2}+\frac {1}{8} \text {RootSum}\left [-2+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )-4 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2+3 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4}{-2 \text {$\#$1}^3+\text {$\#$1}^5}\&\right ]+\frac {1}{8} \text {RootSum}\left [2-8 \text {$\#$1}^2+8 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )-4 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2+3 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4}{2 \text {$\#$1}-2 \text {$\#$1}^3+\text {$\#$1}^5}\&\right ] \] Output:

Unintegrable
                                                                                    
                                                                                    
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(682\) vs. \(2(323)=646\).

Time = 0.59 (sec) , antiderivative size = 682, normalized size of antiderivative = 2.11 \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=\frac {1}{8} \left (-\frac {8 x \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{-1+x^2}+4 \text {RootSum}\left [-2+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {3 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )-2 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2+\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4}{2 \text {$\#$1}-3 \text {$\#$1}^3+\text {$\#$1}^5}\&\right ]-\text {RootSum}\left [-2+4 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )+7 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2-\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4+\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^6}{2 \text {$\#$1}^3-3 \text {$\#$1}^5+\text {$\#$1}^7}\&\right ]+4 \text {RootSum}\left [2-8 \text {$\#$1}^2+8 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {-\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}-2 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^3+\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^5}{-2+4 \text {$\#$1}^2-3 \text {$\#$1}^4+\text {$\#$1}^6}\&\right ]-\text {RootSum}\left [2-8 \text {$\#$1}^2+8 \text {$\#$1}^4-4 \text {$\#$1}^6+\text {$\#$1}^8\&,\frac {\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right )-9 \log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^2-\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^4+\log \left (\sqrt {1+\sqrt {x+\sqrt {1+x^2}}}-\text {$\#$1}\right ) \text {$\#$1}^6}{-2 \text {$\#$1}+4 \text {$\#$1}^3-3 \text {$\#$1}^5+\text {$\#$1}^7}\&\right ]\right ) \] Input:

Integrate[((1 + x^2)*Sqrt[x + Sqrt[1 + x^2]]*Sqrt[1 + Sqrt[x + Sqrt[1 + x^ 
2]]])/(1 - x^2)^2,x]
 

Output:

((-8*x*Sqrt[x + Sqrt[1 + x^2]]*Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]])/(-1 + x^ 
2) + 4*RootSum[-2 + 4*#1^4 - 4*#1^6 + #1^8 & , (3*Log[Sqrt[1 + Sqrt[x + Sq 
rt[1 + x^2]]] - #1] - 2*Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^2 + 
 Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^4)/(2*#1 - 3*#1^3 + #1^5) 
& ] - RootSum[-2 + 4*#1^4 - 4*#1^6 + #1^8 & , (Log[Sqrt[1 + Sqrt[x + Sqrt[ 
1 + x^2]]] - #1] + 7*Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^2 - Lo 
g[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^4 + Log[Sqrt[1 + Sqrt[x + Sqr 
t[1 + x^2]]] - #1]*#1^6)/(2*#1^3 - 3*#1^5 + #1^7) & ] + 4*RootSum[2 - 8*#1 
^2 + 8*#1^4 - 4*#1^6 + #1^8 & , (-(Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - 
 #1]*#1) - 2*Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^3 + Log[Sqrt[1 
 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^5)/(-2 + 4*#1^2 - 3*#1^4 + #1^6) & ] 
- RootSum[2 - 8*#1^2 + 8*#1^4 - 4*#1^6 + #1^8 & , (Log[Sqrt[1 + Sqrt[x + S 
qrt[1 + x^2]]] - #1] - 9*Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^2 
- Log[Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]] - #1]*#1^4 + Log[Sqrt[1 + Sqrt[x + 
 Sqrt[1 + x^2]]] - #1]*#1^6)/(-2*#1 + 4*#1^3 - 3*#1^5 + #1^7) & ])/8
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^2+1\right ) \sqrt {\sqrt {x^2+1}+x} \sqrt {\sqrt {\sqrt {x^2+1}+x}+1}}{\left (1-x^2\right )^2} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {2 \sqrt {\sqrt {x^2+1}+x} \sqrt {\sqrt {\sqrt {x^2+1}+x}+1}}{\left (1-x^2\right )^2}-\frac {\sqrt {\sqrt {x^2+1}+x} \sqrt {\sqrt {\sqrt {x^2+1}+x}+1}}{1-x^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {x+\sqrt {x^2+1}} \sqrt {\sqrt {x+\sqrt {x^2+1}}+1}}{(1-x)^2}dx+\frac {1}{2} \int \frac {\sqrt {x+\sqrt {x^2+1}} \sqrt {\sqrt {x+\sqrt {x^2+1}}+1}}{(x+1)^2}dx\)

Input:

Int[((1 + x^2)*Sqrt[x + Sqrt[1 + x^2]]*Sqrt[1 + Sqrt[x + Sqrt[1 + x^2]]])/ 
(1 - x^2)^2,x]
 

Output:

$Aborted
 
Maple [N/A]

Not integrable

Time = 0.02 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.13

\[\int \frac {\left (x^{2}+1\right ) \sqrt {x +\sqrt {x^{2}+1}}\, \sqrt {1+\sqrt {x +\sqrt {x^{2}+1}}}}{\left (-x^{2}+1\right )^{2}}d x\]

Input:

int((x^2+1)*(x+(x^2+1)^(1/2))^(1/2)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(-x^ 
2+1)^2,x)
 

Output:

int((x^2+1)*(x+(x^2+1)^(1/2))^(1/2)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(-x^ 
2+1)^2,x)
 

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 0.96 (sec) , antiderivative size = 6671, normalized size of antiderivative = 20.65 \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=\text {Too large to display} \] Input:

integrate((x^2+1)*(x+(x^2+1)^(1/2))^(1/2)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2 
)/(-x^2+1)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [N/A]

Not integrable

Time = 31.52 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.15 \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=\int \frac {\sqrt {x + \sqrt {x^{2} + 1}} \left (x^{2} + 1\right ) \sqrt {\sqrt {x + \sqrt {x^{2} + 1}} + 1}}{\left (x - 1\right )^{2} \left (x + 1\right )^{2}}\, dx \] Input:

integrate((x**2+1)*(x+(x**2+1)**(1/2))**(1/2)*(1+(x+(x**2+1)**(1/2))**(1/2 
))**(1/2)/(-x**2+1)**2,x)
 

Output:

Integral(sqrt(x + sqrt(x**2 + 1))*(x**2 + 1)*sqrt(sqrt(x + sqrt(x**2 + 1)) 
 + 1)/((x - 1)**2*(x + 1)**2), x)
 

Maxima [N/A]

Not integrable

Time = 0.70 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.13 \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=\int { \frac {{\left (x^{2} + 1\right )} \sqrt {x + \sqrt {x^{2} + 1}} \sqrt {\sqrt {x + \sqrt {x^{2} + 1}} + 1}}{{\left (x^{2} - 1\right )}^{2}} \,d x } \] Input:

integrate((x^2+1)*(x+(x^2+1)^(1/2))^(1/2)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2 
)/(-x^2+1)^2,x, algorithm="maxima")
 

Output:

integrate((x^2 + 1)*sqrt(x + sqrt(x^2 + 1))*sqrt(sqrt(x + sqrt(x^2 + 1)) + 
 1)/(x^2 - 1)^2, x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=\text {Timed out} \] Input:

integrate((x^2+1)*(x+(x^2+1)^(1/2))^(1/2)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2 
)/(-x^2+1)^2,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [N/A]

Not integrable

Time = 10.00 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.13 \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=\int \frac {\sqrt {\sqrt {x+\sqrt {x^2+1}}+1}\,\left (x^2+1\right )\,\sqrt {x+\sqrt {x^2+1}}}{{\left (x^2-1\right )}^2} \,d x \] Input:

int((((x + (x^2 + 1)^(1/2))^(1/2) + 1)^(1/2)*(x^2 + 1)*(x + (x^2 + 1)^(1/2 
))^(1/2))/(x^2 - 1)^2,x)
 

Output:

int((((x + (x^2 + 1)^(1/2))^(1/2) + 1)^(1/2)*(x^2 + 1)*(x + (x^2 + 1)^(1/2 
))^(1/2))/(x^2 - 1)^2, x)
 

Reduce [N/A]

Not integrable

Time = 200.03 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.13 \[ \int \frac {\left (1+x^2\right ) \sqrt {x+\sqrt {1+x^2}} \sqrt {1+\sqrt {x+\sqrt {1+x^2}}}}{\left (1-x^2\right )^2} \, dx=\int \frac {\left (x^{2}+1\right ) \sqrt {x +\sqrt {x^{2}+1}}\, \sqrt {1+\sqrt {x +\sqrt {x^{2}+1}}}}{\left (-x^{2}+1\right )^{2}}d x \] Input:

int((x^2+1)*(x+(x^2+1)^(1/2))^(1/2)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(-x^ 
2+1)^2,x)
 

Output:

int((x^2+1)*(x+(x^2+1)^(1/2))^(1/2)*(1+(x+(x^2+1)^(1/2))^(1/2))^(1/2)/(-x^ 
2+1)^2,x)