\(\int \frac {x^4 (-q+p x^4) \sqrt {q+p x^4}}{b x^8+a (q+p x^4)^4} \, dx\) [3047]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [F]
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 457 \[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=-\frac {\sqrt {2+\sqrt {2}} \arctan \left (\frac {\left (\sqrt {\frac {2}{2-\sqrt {2}}} \sqrt [8]{a} \sqrt [8]{b}-\frac {2 \sqrt [8]{a} \sqrt [8]{b}}{\sqrt {2-\sqrt {2}}}\right ) x \sqrt {q+p x^4}}{-\sqrt [4]{a} q+\sqrt [4]{b} x^2-\sqrt [4]{a} p x^4}\right )}{8 a^{3/8} b^{5/8}}+\frac {\sqrt {2-\sqrt {2}} \arctan \left (\frac {\sqrt {2+\sqrt {2}} \sqrt [8]{a} \sqrt [8]{b} x \sqrt {q+p x^4}}{\sqrt [4]{a} q-\sqrt [4]{b} x^2+\sqrt [4]{a} p x^4}\right )}{8 a^{3/8} b^{5/8}}-\frac {\sqrt {2+\sqrt {2}} \text {arctanh}\left (\frac {\frac {\sqrt [8]{a} q}{\sqrt {2-\sqrt {2}} \sqrt [8]{b}}+\frac {\sqrt [8]{b} x^2}{\sqrt {2-\sqrt {2}} \sqrt [8]{a}}+\frac {\sqrt [8]{a} p x^4}{\sqrt {2-\sqrt {2}} \sqrt [8]{b}}}{x \sqrt {q+p x^4}}\right )}{8 a^{3/8} b^{5/8}}+\frac {\sqrt {2-\sqrt {2}} \text {arctanh}\left (\frac {\frac {\sqrt [8]{a} q}{\sqrt {2+\sqrt {2}} \sqrt [8]{b}}+\frac {\sqrt [8]{b} x^2}{\sqrt {2+\sqrt {2}} \sqrt [8]{a}}+\frac {\sqrt [8]{a} p x^4}{\sqrt {2+\sqrt {2}} \sqrt [8]{b}}}{x \sqrt {q+p x^4}}\right )}{8 a^{3/8} b^{5/8}} \] Output:

-1/8*(2+2^(1/2))^(1/2)*arctan((2^(1/2)/(2-2^(1/2))^(1/2)*a^(1/8)*b^(1/8)-2 
*a^(1/8)*b^(1/8)/(2-2^(1/2))^(1/2))*x*(p*x^4+q)^(1/2)/(-a^(1/4)*q+b^(1/4)* 
x^2-a^(1/4)*p*x^4))/a^(3/8)/b^(5/8)+1/8*(2-2^(1/2))^(1/2)*arctan((2+2^(1/2 
))^(1/2)*a^(1/8)*b^(1/8)*x*(p*x^4+q)^(1/2)/(a^(1/4)*q-b^(1/4)*x^2+a^(1/4)* 
p*x^4))/a^(3/8)/b^(5/8)-1/8*(2+2^(1/2))^(1/2)*arctanh((a^(1/8)*q/(2-2^(1/2 
))^(1/2)/b^(1/8)+b^(1/8)*x^2/(2-2^(1/2))^(1/2)/a^(1/8)+a^(1/8)*p*x^4/(2-2^ 
(1/2))^(1/2)/b^(1/8))/x/(p*x^4+q)^(1/2))/a^(3/8)/b^(5/8)+1/8*(2-2^(1/2))^( 
1/2)*arctanh((a^(1/8)*q/(2+2^(1/2))^(1/2)/b^(1/8)+b^(1/8)*x^2/(2+2^(1/2))^ 
(1/2)/a^(1/8)+a^(1/8)*p*x^4/(2+2^(1/2))^(1/2)/b^(1/8))/x/(p*x^4+q)^(1/2))/ 
a^(3/8)/b^(5/8)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 17.68 (sec) , antiderivative size = 15065, normalized size of antiderivative = 32.96 \[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=\text {Result too large to show} \] Input:

Integrate[(x^4*(-q + p*x^4)*Sqrt[q + p*x^4])/(b*x^8 + a*(q + p*x^4)^4),x]
 

Output:

Result too large to show
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \left (p x^4-q\right ) \sqrt {p x^4+q}}{a \left (p x^4+q\right )^4+b x^8} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {p x^8 \sqrt {p x^4+q}}{b x^8 \left (\frac {6 a p^2 q^2}{b}+1\right )+a p^4 x^{16}+4 a p^3 q x^{12}+4 a p q^3 x^4+a q^4}+\frac {q x^4 \sqrt {p x^4+q}}{-b x^8 \left (\frac {6 a p^2 q^2}{b}+1\right )-a p^4 x^{16}-4 a p^3 q x^{12}-4 a p q^3 x^4-a q^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle q \int \frac {x^4 \sqrt {p x^4+q}}{-b x^8-a \left (p x^4+q\right )^4}dx+p \int \frac {x^8 \sqrt {p x^4+q}}{b x^8+a \left (p x^4+q\right )^4}dx\)

Input:

Int[(x^4*(-q + p*x^4)*Sqrt[q + p*x^4])/(b*x^8 + a*(q + p*x^4)^4),x]
 

Output:

$Aborted
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.83 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.09

method result size
default \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{8}+b \right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\sqrt {p \,x^{4}+q}}{x}\right )}{\textit {\_R}^{5}}}{8 a}\) \(40\)
pseudoelliptic \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{8}+b \right )}{\sum }\frac {\ln \left (\frac {-\textit {\_R} x +\sqrt {p \,x^{4}+q}}{x}\right )}{\textit {\_R}^{5}}}{8 a}\) \(40\)
elliptic \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (16 a \,\textit {\_Z}^{8}+b \right )}{\sum }\frac {\ln \left (\frac {\sqrt {p \,x^{4}+q}\, \sqrt {2}}{2 x}-\textit {\_R} \right )}{\textit {\_R}^{5}}\right ) \sqrt {2}}{64 a}\) \(47\)

Input:

int(x^4*(p*x^4-q)*(p*x^4+q)^(1/2)/(b*x^8+a*(p*x^4+q)^4),x,method=_RETURNVE 
RBOSE)
 

Output:

1/8*sum(ln((-_R*x+(p*x^4+q)^(1/2))/x)/_R^5,_R=RootOf(_Z^8*a+b))/a
                                                                                    
                                                                                    
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=\text {Timed out} \] Input:

integrate(x^4*(p*x^4-q)*(p*x^4+q)^(1/2)/(b*x^8+a*(p*x^4+q)^4),x, algorithm 
="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=\text {Timed out} \] Input:

integrate(x**4*(p*x**4-q)*(p*x**4+q)**(1/2)/(b*x**8+a*(p*x**4+q)**4),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=\int { \frac {\sqrt {p x^{4} + q} {\left (p x^{4} - q\right )} x^{4}}{b x^{8} + {\left (p x^{4} + q\right )}^{4} a} \,d x } \] Input:

integrate(x^4*(p*x^4-q)*(p*x^4+q)^(1/2)/(b*x^8+a*(p*x^4+q)^4),x, algorithm 
="maxima")
 

Output:

integrate(sqrt(p*x^4 + q)*(p*x^4 - q)*x^4/(b*x^8 + (p*x^4 + q)^4*a), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=\text {Timed out} \] Input:

integrate(x^4*(p*x^4-q)*(p*x^4+q)^(1/2)/(b*x^8+a*(p*x^4+q)^4),x, algorithm 
="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=-\int \frac {x^4\,\sqrt {p\,x^4+q}\,\left (q-p\,x^4\right )}{a\,{\left (p\,x^4+q\right )}^4+b\,x^8} \,d x \] Input:

int(-(x^4*(q + p*x^4)^(1/2)*(q - p*x^4))/(a*(q + p*x^4)^4 + b*x^8),x)
 

Output:

-int((x^4*(q + p*x^4)^(1/2)*(q - p*x^4))/(a*(q + p*x^4)^4 + b*x^8), x)
 

Reduce [F]

\[ \int \frac {x^4 \left (-q+p x^4\right ) \sqrt {q+p x^4}}{b x^8+a \left (q+p x^4\right )^4} \, dx=\left (\int \frac {\sqrt {p \,x^{4}+q}\, x^{8}}{a \,p^{4} x^{16}+4 a \,p^{3} q \,x^{12}+6 a \,p^{2} q^{2} x^{8}+4 a p \,q^{3} x^{4}+b \,x^{8}+a \,q^{4}}d x \right ) p -\left (\int \frac {\sqrt {p \,x^{4}+q}\, x^{4}}{a \,p^{4} x^{16}+4 a \,p^{3} q \,x^{12}+6 a \,p^{2} q^{2} x^{8}+4 a p \,q^{3} x^{4}+b \,x^{8}+a \,q^{4}}d x \right ) q \] Input:

int(x^4*(p*x^4-q)*(p*x^4+q)^(1/2)/(b*x^8+a*(p*x^4+q)^4),x)
 

Output:

int((sqrt(p*x**4 + q)*x**8)/(a*p**4*x**16 + 4*a*p**3*q*x**12 + 6*a*p**2*q* 
*2*x**8 + 4*a*p*q**3*x**4 + a*q**4 + b*x**8),x)*p - int((sqrt(p*x**4 + q)* 
x**4)/(a*p**4*x**16 + 4*a*p**3*q*x**12 + 6*a*p**2*q**2*x**8 + 4*a*p*q**3*x 
**4 + a*q**4 + b*x**8),x)*q