\(\int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx\) [65]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 74, antiderivative size = 141 \[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=\left (-1-\sqrt {5}\right ) \arctan \left (\frac {1}{2} \left (-1+\sqrt {5}\right ) x^4\right )+\left (1-\sqrt {5}\right ) \arctan \left (\frac {1}{2} \left (1+\sqrt {5}\right ) x^4\right )-\sqrt {5} \text {arctanh}\left (\frac {1}{5} \left (3 \sqrt {5}+2 \sqrt {5} x^4\right )\right )-\sqrt {5} \text {arctanh}\left (\frac {1}{15} \left (7 \sqrt {5}+2 \sqrt {5} x^4\right )\right )+\frac {1}{2} \log \left (1+3 x^4+x^8\right )-\frac {1}{2} \log \left (1+7 x^4+x^8\right ) \] Output:

(-5^(1/2)-1)*arctan(1/2*(5^(1/2)-1)*x^4)+(-5^(1/2)+1)*arctan(1/2*(5^(1/2)+ 
1)*x^4)-5^(1/2)*arctanh(3/5*5^(1/2)+2/5*5^(1/2)*x^4)-5^(1/2)*arctanh(7/15* 
5^(1/2)+2/15*5^(1/2)*x^4)+1/2*ln(x^8+3*x^4+1)-1/2*ln(x^8+7*x^4+1)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.07 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.07 \[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=\frac {1}{2} \left (\left (1+\sqrt {5}\right ) \log \left (-3+\sqrt {5}-2 x^4\right )+\left (-1+\sqrt {5}\right ) \log \left (-7+3 \sqrt {5}-2 x^4\right )-\left (-1+\sqrt {5}\right ) \log \left (3+\sqrt {5}+2 x^4\right )-\left (1+\sqrt {5}\right ) \log \left (7+3 \sqrt {5}+2 x^4\right )-2 \text {RootSum}\left [1+3 \text {$\#$1}^8+\text {$\#$1}^{16}\&,\frac {2 \log (x-\text {$\#$1})+3 \log (x-\text {$\#$1}) \text {$\#$1}^8}{3 \text {$\#$1}^4+2 \text {$\#$1}^{12}}\&\right ]\right ) \] Input:

Integrate[(16*x^3 - 248*x^11 + 80*x^15 - 392*x^19 - 80*x^23 + 24*x^27)/(1 
+ 10*x^4 + 26*x^8 + 40*x^12 + 71*x^16 + 40*x^20 + 26*x^24 + 10*x^28 + x^32 
),x]
 

Output:

((1 + Sqrt[5])*Log[-3 + Sqrt[5] - 2*x^4] + (-1 + Sqrt[5])*Log[-7 + 3*Sqrt[ 
5] - 2*x^4] - (-1 + Sqrt[5])*Log[3 + Sqrt[5] + 2*x^4] - (1 + Sqrt[5])*Log[ 
7 + 3*Sqrt[5] + 2*x^4] - 2*RootSum[1 + 3*#1^8 + #1^16 & , (2*Log[x - #1] + 
 3*Log[x - #1]*#1^8)/(3*#1^4 + 2*#1^12) & ])/2
 

Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.27, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {2460, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {24 x^{27}-80 x^{23}-392 x^{19}+80 x^{15}-248 x^{11}+16 x^3}{x^{32}+10 x^{28}+26 x^{24}+40 x^{20}+71 x^{16}+40 x^{12}+26 x^8+10 x^4+1} \, dx\)

\(\Big \downarrow \) 2460

\(\displaystyle \int \left (-\frac {8 \left (3 x^8+2\right ) x^3}{x^{16}+3 x^8+1}+\frac {4 \left (x^4+4\right ) x^3}{x^8+3 x^4+1}-\frac {4 \left (x^4-4\right ) x^3}{x^8+7 x^4+1}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\sqrt {2 \left (3+\sqrt {5}\right )} \arctan \left (\sqrt {\frac {2}{3+\sqrt {5}}} x^4\right )-\sqrt {2 \left (3-\sqrt {5}\right )} \arctan \left (\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )} x^4\right )-\frac {1}{2} \left (1-\sqrt {5}\right ) \log \left (2 x^4-3 \sqrt {5}+7\right )+\frac {1}{2} \left (1+\sqrt {5}\right ) \log \left (2 x^4-\sqrt {5}+3\right )+\frac {1}{2} \left (1-\sqrt {5}\right ) \log \left (2 x^4+\sqrt {5}+3\right )-\frac {1}{2} \left (1+\sqrt {5}\right ) \log \left (2 x^4+3 \sqrt {5}+7\right )\)

Input:

Int[(16*x^3 - 248*x^11 + 80*x^15 - 392*x^19 - 80*x^23 + 24*x^27)/(1 + 10*x 
^4 + 26*x^8 + 40*x^12 + 71*x^16 + 40*x^20 + 26*x^24 + 10*x^28 + x^32),x]
 

Output:

-(Sqrt[2*(3 + Sqrt[5])]*ArcTan[Sqrt[2/(3 + Sqrt[5])]*x^4]) - Sqrt[2*(3 - S 
qrt[5])]*ArcTan[Sqrt[(3 + Sqrt[5])/2]*x^4] - ((1 - Sqrt[5])*Log[7 - 3*Sqrt 
[5] + 2*x^4])/2 + ((1 + Sqrt[5])*Log[3 - Sqrt[5] + 2*x^4])/2 + ((1 - Sqrt[ 
5])*Log[3 + Sqrt[5] + 2*x^4])/2 - ((1 + Sqrt[5])*Log[7 + 3*Sqrt[5] + 2*x^4 
])/2
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2460
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px /. x -> Sqrt[x]]}, 
Int[ExpandIntegrand[u*(Qx /. x -> x^2)^p, x], x] /;  !SumQ[NonfreeFactors[Q 
x, x]]] /; PolyQ[Px, x^2] && GtQ[Expon[Px, x], 2] &&  !BinomialQ[Px, x] && 
 !TrinomialQ[Px, x] && ILtQ[p, 0] && RationalFunctionQ[u, x]
 
Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.96

method result size
default \(\frac {\ln \left (x^{8}+3 x^{4}+1\right )}{2}-\sqrt {5}\, \operatorname {arctanh}\left (\frac {\left (2 x^{4}+3\right ) \sqrt {5}}{5}\right )-\frac {\ln \left (x^{8}+7 x^{4}+1\right )}{2}-\sqrt {5}\, \operatorname {arctanh}\left (\frac {\left (2 x^{4}+7\right ) \sqrt {5}}{15}\right )-\frac {4 \sqrt {5}\, \left (5+3 \sqrt {5}\right ) \arctan \left (\frac {4 x^{4}}{2+2 \sqrt {5}}\right )}{5 \left (2+2 \sqrt {5}\right )}-\frac {4 \left (3 \sqrt {5}-5\right ) \sqrt {5}\, \arctan \left (\frac {4 x^{4}}{-2+2 \sqrt {5}}\right )}{5 \left (-2+2 \sqrt {5}\right )}\) \(136\)
risch \(\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+3 \textit {\_Z}^{2}+1\right )}{\sum }\textit {\_R} \ln \left (x^{4}-\textit {\_R} \right )\right )+\frac {\ln \left (2 x^{4}-\sqrt {5}+3\right )}{2}+\frac {\ln \left (2 x^{4}-\sqrt {5}+3\right ) \sqrt {5}}{2}+\frac {\ln \left (2 x^{4}+\sqrt {5}+3\right )}{2}-\frac {\ln \left (2 x^{4}+\sqrt {5}+3\right ) \sqrt {5}}{2}+\frac {\ln \left (2 x^{4}-3 \sqrt {5}+7\right ) \sqrt {5}}{2}-\frac {\ln \left (2 x^{4}-3 \sqrt {5}+7\right )}{2}-\frac {\ln \left (2 x^{4}+3 \sqrt {5}+7\right )}{2}-\frac {\ln \left (2 x^{4}+3 \sqrt {5}+7\right ) \sqrt {5}}{2}\) \(154\)

Input:

int((24*x^27-80*x^23-392*x^19+80*x^15-248*x^11+16*x^3)/(x^32+10*x^28+26*x^ 
24+40*x^20+71*x^16+40*x^12+26*x^8+10*x^4+1),x,method=_RETURNVERBOSE)
 

Output:

1/2*ln(x^8+3*x^4+1)-5^(1/2)*arctanh(1/5*(2*x^4+3)*5^(1/2))-1/2*ln(x^8+7*x^ 
4+1)-5^(1/2)*arctanh(1/15*(2*x^4+7)*5^(1/2))-4/5*5^(1/2)*(5+3*5^(1/2))/(2+ 
2*5^(1/2))*arctan(4*x^4/(2+2*5^(1/2)))-4/5*(3*5^(1/2)-5)*5^(1/2)/(-2+2*5^( 
1/2))*arctan(4*x^4/(-2+2*5^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.11 \[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=-{\left (\sqrt {5} - 1\right )} \arctan \left (\frac {1}{2} \, \sqrt {5} x^{4} + \frac {1}{2} \, x^{4}\right ) - {\left (\sqrt {5} + 1\right )} \arctan \left (\frac {1}{2} \, \sqrt {5} x^{4} - \frac {1}{2} \, x^{4}\right ) + \frac {1}{2} \, \sqrt {5} \log \left (\frac {2 \, x^{8} + 14 \, x^{4} - 3 \, \sqrt {5} {\left (2 \, x^{4} + 7\right )} + 47}{x^{8} + 7 \, x^{4} + 1}\right ) + \frac {1}{2} \, \sqrt {5} \log \left (\frac {2 \, x^{8} + 6 \, x^{4} - \sqrt {5} {\left (2 \, x^{4} + 3\right )} + 7}{x^{8} + 3 \, x^{4} + 1}\right ) - \frac {1}{2} \, \log \left (x^{8} + 7 \, x^{4} + 1\right ) + \frac {1}{2} \, \log \left (x^{8} + 3 \, x^{4} + 1\right ) \] Input:

integrate((24*x^27-80*x^23-392*x^19+80*x^15-248*x^11+16*x^3)/(x^32+10*x^28 
+26*x^24+40*x^20+71*x^16+40*x^12+26*x^8+10*x^4+1),x, algorithm="fricas")
 

Output:

-(sqrt(5) - 1)*arctan(1/2*sqrt(5)*x^4 + 1/2*x^4) - (sqrt(5) + 1)*arctan(1/ 
2*sqrt(5)*x^4 - 1/2*x^4) + 1/2*sqrt(5)*log((2*x^8 + 14*x^4 - 3*sqrt(5)*(2* 
x^4 + 7) + 47)/(x^8 + 7*x^4 + 1)) + 1/2*sqrt(5)*log((2*x^8 + 6*x^4 - sqrt( 
5)*(2*x^4 + 3) + 7)/(x^8 + 3*x^4 + 1)) - 1/2*log(x^8 + 7*x^4 + 1) + 1/2*lo 
g(x^8 + 3*x^4 + 1)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 457 vs. \(2 (126) = 252\).

Time = 0.39 (sec) , antiderivative size = 457, normalized size of antiderivative = 3.24 \[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=\left (\frac {1}{2} - \frac {\sqrt {5}}{2}\right ) \log {\left (x^{4} - \frac {1}{12} - \frac {\left (\frac {1}{2} - \frac {\sqrt {5}}{2}\right )^{6}}{6} + \frac {\left (\frac {1}{2} - \frac {\sqrt {5}}{2}\right )^{7}}{6} + \frac {\left (\frac {1}{2} - \frac {\sqrt {5}}{2}\right )^{4}}{6} - \frac {4 \left (\frac {1}{2} - \frac {\sqrt {5}}{2}\right )^{3}}{3} + \frac {11 \left (\frac {1}{2} - \frac {\sqrt {5}}{2}\right )^{2}}{6} + \frac {3 \sqrt {5}}{4} \right )} + \left (- \frac {1}{2} + \frac {\sqrt {5}}{2}\right ) \log {\left (x^{4} - \frac {3 \sqrt {5}}{4} - \frac {4 \left (- \frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{3}}{3} - \frac {\left (- \frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{6}}{6} + \frac {\left (- \frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{7}}{6} + \frac {\left (- \frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{4}}{6} + \frac {11 \left (- \frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{2}}{6} + \frac {17}{12} \right )} + \left (\frac {1}{2} + \frac {\sqrt {5}}{2}\right ) \log {\left (x^{4} - \frac {4 \left (\frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{3}}{3} - \frac {\left (\frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{6}}{6} - \frac {3 \sqrt {5}}{4} - \frac {1}{12} + \frac {\left (\frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{4}}{6} + \frac {11 \left (\frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{2}}{6} + \frac {\left (\frac {1}{2} + \frac {\sqrt {5}}{2}\right )^{7}}{6} \right )} + \left (- \frac {\sqrt {5}}{2} - \frac {1}{2}\right ) \log {\left (x^{4} + \frac {\left (- \frac {\sqrt {5}}{2} - \frac {1}{2}\right )^{7}}{6} - \frac {\left (- \frac {\sqrt {5}}{2} - \frac {1}{2}\right )^{6}}{6} + \frac {\left (- \frac {\sqrt {5}}{2} - \frac {1}{2}\right )^{4}}{6} + \frac {17}{12} + \frac {3 \sqrt {5}}{4} + \frac {11 \left (- \frac {\sqrt {5}}{2} - \frac {1}{2}\right )^{2}}{6} - \frac {4 \left (- \frac {\sqrt {5}}{2} - \frac {1}{2}\right )^{3}}{3} \right )} + \operatorname {RootSum} {\left (t^{4} + 3 t^{2} + 1, \left ( t \mapsto t \log {\left (\frac {t^{7}}{6} - \frac {t^{6}}{6} + \frac {t^{4}}{6} - \frac {4 t^{3}}{3} + \frac {11 t^{2}}{6} - \frac {3 t}{2} + x^{4} + \frac {2}{3} \right )} \right )\right )} \] Input:

integrate((24*x**27-80*x**23-392*x**19+80*x**15-248*x**11+16*x**3)/(x**32+ 
10*x**28+26*x**24+40*x**20+71*x**16+40*x**12+26*x**8+10*x**4+1),x)
                                                                                    
                                                                                    
 

Output:

(1/2 - sqrt(5)/2)*log(x**4 - 1/12 - (1/2 - sqrt(5)/2)**6/6 + (1/2 - sqrt(5 
)/2)**7/6 + (1/2 - sqrt(5)/2)**4/6 - 4*(1/2 - sqrt(5)/2)**3/3 + 11*(1/2 - 
sqrt(5)/2)**2/6 + 3*sqrt(5)/4) + (-1/2 + sqrt(5)/2)*log(x**4 - 3*sqrt(5)/4 
 - 4*(-1/2 + sqrt(5)/2)**3/3 - (-1/2 + sqrt(5)/2)**6/6 + (-1/2 + sqrt(5)/2 
)**7/6 + (-1/2 + sqrt(5)/2)**4/6 + 11*(-1/2 + sqrt(5)/2)**2/6 + 17/12) + ( 
1/2 + sqrt(5)/2)*log(x**4 - 4*(1/2 + sqrt(5)/2)**3/3 - (1/2 + sqrt(5)/2)** 
6/6 - 3*sqrt(5)/4 - 1/12 + (1/2 + sqrt(5)/2)**4/6 + 11*(1/2 + sqrt(5)/2)** 
2/6 + (1/2 + sqrt(5)/2)**7/6) + (-sqrt(5)/2 - 1/2)*log(x**4 + (-sqrt(5)/2 
- 1/2)**7/6 - (-sqrt(5)/2 - 1/2)**6/6 + (-sqrt(5)/2 - 1/2)**4/6 + 17/12 + 
3*sqrt(5)/4 + 11*(-sqrt(5)/2 - 1/2)**2/6 - 4*(-sqrt(5)/2 - 1/2)**3/3) + Ro 
otSum(_t**4 + 3*_t**2 + 1, Lambda(_t, _t*log(_t**7/6 - _t**6/6 + _t**4/6 - 
 4*_t**3/3 + 11*_t**2/6 - 3*_t/2 + x**4 + 2/3)))
 

Maxima [F]

\[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=\int { \frac {8 \, {\left (3 \, x^{27} - 10 \, x^{23} - 49 \, x^{19} + 10 \, x^{15} - 31 \, x^{11} + 2 \, x^{3}\right )}}{x^{32} + 10 \, x^{28} + 26 \, x^{24} + 40 \, x^{20} + 71 \, x^{16} + 40 \, x^{12} + 26 \, x^{8} + 10 \, x^{4} + 1} \,d x } \] Input:

integrate((24*x^27-80*x^23-392*x^19+80*x^15-248*x^11+16*x^3)/(x^32+10*x^28 
+26*x^24+40*x^20+71*x^16+40*x^12+26*x^8+10*x^4+1),x, algorithm="maxima")
 

Output:

8*integrate((3*x^27 - 10*x^23 - 49*x^19 + 10*x^15 - 31*x^11 + 2*x^3)/(x^32 
 + 10*x^28 + 26*x^24 + 40*x^20 + 71*x^16 + 40*x^12 + 26*x^8 + 10*x^4 + 1), 
 x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((24*x^27-80*x^23-392*x^19+80*x^15-248*x^11+16*x^3)/(x^32+10*x^28 
+26*x^24+40*x^20+71*x^16+40*x^12+26*x^8+10*x^4+1),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:int(sage0,sageVARx)  Error: Bad Arg 
ument Type
 

Mupad [B] (verification not implemented)

Time = 11.16 (sec) , antiderivative size = 2153, normalized size of antiderivative = 15.27 \[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=\text {Too large to display} \] Input:

int((16*x^3 - 248*x^11 + 80*x^15 - 392*x^19 - 80*x^23 + 24*x^27)/(10*x^4 + 
 26*x^8 + 40*x^12 + 71*x^16 + 40*x^20 + 26*x^24 + 10*x^28 + x^32 + 1),x)
 

Output:

atan(((- 5^(1/2)/2 - 3/2)^(1/2)*117779131845107704926873936971012505600000 
00000000000000000000000000000000000000000i)/(51058337120893890751916603222 
89090560000000000000000000000000000000000000000000000*5^(1/2) - 5267248564 
920505865498027973043814400000000000000000000000000000000000000000000000*5 
^(1/2)*x^4 + 1177791318451077049268739369710125056000000000000000000000000 
0000000000000000000000*x^4 - 114170233933457692052694155217233510400000000 
00000000000000000000000000000000000000) - (5^(1/2)*(- 5^(1/2)/2 - 3/2)^(1/ 
2)*52672485649205058654980279730438144000000000000000000000000000000000000 
00000000000i)/(51058337120893890751916603222890905600000000000000000000000 
00000000000000000000000*5^(1/2) - 5267248564920505865498027973043814400000 
000000000000000000000000000000000000000000*5^(1/2)*x^4 + 11777913184510770 
492687393697101250560000000000000000000000000000000000000000000000*x^4 - 1 
14170233933457692052694155217233510400000000000000000000000000000000000000 
00000000) + (x^4*(- 5^(1/2)/2 - 3/2)^(1/2)*2989011937024212649588327408830 
7752960000000000000000000000000000000000000000000000i)/(510583371208938907 
5191660322289090560000000000000000000000000000000000000000000000*5^(1/2) - 
 5267248564920505865498027973043814400000000000000000000000000000000000000 
000000000*5^(1/2)*x^4 + 11777913184510770492687393697101250560000000000000 
000000000000000000000000000000000*x^4 - 1141702339334576920526941552172335 
1040000000000000000000000000000000000000000000000) - (5^(1/2)*x^4*(- 5^...
 

Reduce [F]

\[ \int \frac {16 x^3-248 x^{11}+80 x^{15}-392 x^{19}-80 x^{23}+24 x^{27}}{1+10 x^4+26 x^8+40 x^{12}+71 x^{16}+40 x^{20}+26 x^{24}+10 x^{28}+x^{32}} \, dx=\int \frac {24 x^{27}-80 x^{23}-392 x^{19}+80 x^{15}-248 x^{11}+16 x^{3}}{x^{32}+10 x^{28}+26 x^{24}+40 x^{20}+71 x^{16}+40 x^{12}+26 x^{8}+10 x^{4}+1}d x \] Input:

int((24*x^27-80*x^23-392*x^19+80*x^15-248*x^11+16*x^3)/(x^32+10*x^28+26*x^ 
24+40*x^20+71*x^16+40*x^12+26*x^8+10*x^4+1),x)
 

Output:

int((24*x^27-80*x^23-392*x^19+80*x^15-248*x^11+16*x^3)/(x^32+10*x^28+26*x^ 
24+40*x^20+71*x^16+40*x^12+26*x^8+10*x^4+1),x)