\(\int (-3 x^{3/5}+x^{3/2})^2 (-\frac {x^{2/3}}{3}+4 x^{3/2}) \, dx\) [209]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 55 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=-\frac {45 x^{43/15}}{43}+\frac {360 x^{37/10}}{37}+\frac {60 x^{113/30}}{113}-\frac {120 x^{23/5}}{23}-\frac {x^{14/3}}{14}+\frac {8 x^{11/2}}{11} \] Output:

-45/43*x^(43/15)+360/37*x^(37/10)+60/113*x^(113/30)-120/23*x^(23/5)-1/14*x 
^(14/3)+8/11*x^(11/2)
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=-\frac {45 x^{43/15}}{43}+\frac {360 x^{37/10}}{37}+\frac {60 x^{113/30}}{113}-\frac {120 x^{23/5}}{23}-\frac {x^{14/3}}{14}+\frac {8 x^{11/2}}{11} \] Input:

Integrate[(-3*x^(3/5) + x^(3/2))^2*(-1/3*x^(2/3) + 4*x^(3/2)),x]
 

Output:

(-45*x^(43/15))/43 + (360*x^(37/10))/37 + (60*x^(113/30))/113 - (120*x^(23 
/5))/23 - x^(14/3)/14 + (8*x^(11/2))/11
 

Rubi [A] (warning: unable to verify)

Time = 0.55 (sec) , antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {2027, 10, 27, 2035, 7267, 25, 2360, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (x^{3/2}-3 x^{3/5}\right )^2 \left (4 x^{3/2}-\frac {x^{2/3}}{3}\right ) \, dx\)

\(\Big \downarrow \) 2027

\(\displaystyle \int \left (x^{9/10}-3\right )^2 x^{6/5} \left (4 x^{3/2}-\frac {x^{2/3}}{3}\right )dx\)

\(\Big \downarrow \) 10

\(\displaystyle \int -\frac {1}{3} \left (1-12 x^{5/6}\right ) \left (3-x^{9/10}\right )^2 x^{28/15}dx\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{3} \int \left (1-12 x^{5/6}\right ) \left (3-x^{9/10}\right )^2 x^{28/15}dx\)

\(\Big \downarrow \) 2035

\(\displaystyle -5 \int \left (1-12 x^{5/6}\right ) \left (3-x^{9/10}\right )^2 x^{14/5}d\sqrt [15]{x}\)

\(\Big \downarrow \) 7267

\(\displaystyle 10 \int -x^{17/3} \left (1-12 x^{5/3}\right ) \left (3-x^{9/5}\right )^2d\sqrt [30]{x}\)

\(\Big \downarrow \) 25

\(\displaystyle -10 \int x^{17/3} \left (1-12 x^{5/3}\right ) \left (3-x^{9/5}\right )^2d\sqrt [30]{x}\)

\(\Big \downarrow \) 2360

\(\displaystyle -10 \int \left (-12 x^{164/15}+x^{139/15}+72 x^{137/15}-6 x^{112/15}-108 x^{22/3}+9 x^{17/3}\right )d\sqrt [30]{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle 10 \left (-\frac {x^{28/3}}{140}-\frac {12 x^{46/5}}{23}+\frac {6 x^{113/15}}{113}+\frac {36 x^{37/5}}{37}-\frac {9 x^{86/15}}{86}+\frac {4 x^{11}}{55}\right )\)

Input:

Int[(-3*x^(3/5) + x^(3/2))^2*(-1/3*x^(2/3) + 4*x^(3/2)),x]
 

Output:

10*((-9*x^(86/15))/86 + (36*x^(37/5))/37 + (6*x^(113/15))/113 - (12*x^(46/ 
5))/23 - x^(28/3)/140 + (4*x^11)/55)
 

Defintions of rubi rules used

rule 10
Int[(u_.)*((e_.)*(x_))^(m_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x 
_Symbol] :> Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*(a + b*x^(s - r))^p, x], 
 x] /; FreeQ[{a, b, e, m, r, s}, x] && IntegerQ[p] && (IntegerQ[p*r] || GtQ 
[e, 0]) && PosQ[s - r]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2027
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x_Symbol] :> Int[x^ 
(p*r)*(a + b*x^(s - r))^p*Fx, x] /; FreeQ[{a, b, r, s}, x] && IntegerQ[p] & 
& PosQ[s - r] &&  !(EqQ[p, 1] && EqQ[u, 1])
 

rule 2035
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k   Subst 
[Int[x^(k*(m + 1) - 1)*SubstPower[Fx, x, k], x], x, x^(1/k)], x]] /; Fracti 
onQ[m] && AlgebraicFunctionQ[Fx, x]
 

rule 2360
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> 
Int[ExpandIntegrand[(c*x)^m*Pq*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, 
n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 
Maple [A] (verified)

Time = 0.66 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.58

method result size
derivativedivides \(-\frac {45 x^{\frac {43}{15}}}{43}+\frac {360 x^{\frac {37}{10}}}{37}+\frac {60 x^{\frac {113}{30}}}{113}-\frac {120 x^{\frac {23}{5}}}{23}-\frac {x^{\frac {14}{3}}}{14}+\frac {8 x^{\frac {11}{2}}}{11}\) \(32\)
default \(-\frac {45 x^{\frac {43}{15}}}{43}+\frac {360 x^{\frac {37}{10}}}{37}+\frac {60 x^{\frac {113}{30}}}{113}-\frac {120 x^{\frac {23}{5}}}{23}-\frac {x^{\frac {14}{3}}}{14}+\frac {8 x^{\frac {11}{2}}}{11}\) \(32\)
orering \(\text {Expression too large to display}\) \(1068\)

Input:

int((-3*x^(3/5)+x^(3/2))^2*(-1/3*x^(2/3)+4*x^(3/2)),x,method=_RETURNVERBOS 
E)
 

Output:

-45/43*x^(43/15)+360/37*x^(37/10)+60/113*x^(113/30)-120/23*x^(23/5)-1/14*x 
^(14/3)+8/11*x^(11/2)
 

Fricas [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.56 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=\frac {8}{11} \, x^{\frac {11}{2}} - \frac {1}{14} \, x^{\frac {14}{3}} - \frac {120}{23} \, x^{\frac {23}{5}} + \frac {60}{113} \, x^{\frac {113}{30}} + \frac {360}{37} \, x^{\frac {37}{10}} - \frac {45}{43} \, x^{\frac {43}{15}} \] Input:

integrate((-3*x^(3/5)+x^(3/2))^2*(-1/3*x^(2/3)+4*x^(3/2)),x, algorithm="fr 
icas")
 

Output:

8/11*x^(11/2) - 1/14*x^(14/3) - 120/23*x^(23/5) + 60/113*x^(113/30) + 360/ 
37*x^(37/10) - 45/43*x^(43/15)
 

Sympy [A] (verification not implemented)

Time = 1.19 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.87 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=\frac {60 x^{\frac {113}{30}}}{113} - \frac {45 x^{\frac {43}{15}}}{43} + \frac {360 x^{\frac {37}{10}}}{37} - \frac {120 x^{\frac {23}{5}}}{23} - \frac {x^{\frac {14}{3}}}{14} + \frac {8 x^{\frac {11}{2}}}{11} \] Input:

integrate((-3*x**(3/5)+x**(3/2))**2*(-1/3*x**(2/3)+4*x**(3/2)),x)
 

Output:

60*x**(113/30)/113 - 45*x**(43/15)/43 + 360*x**(37/10)/37 - 120*x**(23/5)/ 
23 - x**(14/3)/14 + 8*x**(11/2)/11
 

Maxima [A] (verification not implemented)

Time = 0.02 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.56 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=\frac {8}{11} \, x^{\frac {11}{2}} - \frac {1}{14} \, x^{\frac {14}{3}} - \frac {120}{23} \, x^{\frac {23}{5}} + \frac {60}{113} \, x^{\frac {113}{30}} + \frac {360}{37} \, x^{\frac {37}{10}} - \frac {45}{43} \, x^{\frac {43}{15}} \] Input:

integrate((-3*x^(3/5)+x^(3/2))^2*(-1/3*x^(2/3)+4*x^(3/2)),x, algorithm="ma 
xima")
 

Output:

8/11*x^(11/2) - 1/14*x^(14/3) - 120/23*x^(23/5) + 60/113*x^(113/30) + 360/ 
37*x^(37/10) - 45/43*x^(43/15)
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.56 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=\frac {8}{11} \, x^{\frac {11}{2}} - \frac {1}{14} \, x^{\frac {14}{3}} - \frac {120}{23} \, x^{\frac {23}{5}} + \frac {60}{113} \, x^{\frac {113}{30}} + \frac {360}{37} \, x^{\frac {37}{10}} - \frac {45}{43} \, x^{\frac {43}{15}} \] Input:

integrate((-3*x^(3/5)+x^(3/2))^2*(-1/3*x^(2/3)+4*x^(3/2)),x, algorithm="gi 
ac")
 

Output:

8/11*x^(11/2) - 1/14*x^(14/3) - 120/23*x^(23/5) + 60/113*x^(113/30) + 360/ 
37*x^(37/10) - 45/43*x^(43/15)
 

Mupad [B] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.56 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=\frac {8\,x^{11/2}}{11}-\frac {x^{14/3}}{14}-\frac {120\,x^{23/5}}{23}+\frac {360\,x^{37/10}}{37}-\frac {45\,x^{43/15}}{43}+\frac {60\,x^{113/30}}{113} \] Input:

int(-(x^(3/2) - 3*x^(3/5))^2*(x^(2/3)/3 - 4*x^(3/2)),x)
 

Output:

(8*x^(11/2))/11 - x^(14/3)/14 - (120*x^(23/5))/23 + (360*x^(37/10))/37 - ( 
45*x^(43/15))/43 + (60*x^(113/30))/113
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.69 \[ \int \left (-3 x^{3/5}+x^{3/2}\right )^2 \left (-\frac {x^{2/3}}{3}+4 x^{3/2}\right ) \, dx=\frac {x^{2} \left (338119320 x^{\frac {53}{30}}-666409590 x^{\frac {13}{15}}+6195808080 x^{\frac {17}{10}}-3322389840 x^{\frac {13}{5}}-45485099 x^{\frac {8}{3}}+463121008 \sqrt {x}\, x^{3}\right )}{636791386} \] Input:

int((-3*x^(3/5)+x^(3/2))^2*(-1/3*x^(2/3)+4*x^(3/2)),x)
 

Output:

(x**2*(338119320*x**(23/30)*x - 666409590*x**(13/15) + 6195808080*x**(7/10 
)*x - 3322389840*x**(3/5)*x**2 - 45485099*x**(2/3)*x**2 + 463121008*sqrt(x 
)*x**3))/636791386