\(\int \frac {(-1+3 x)^{4/3}}{x^2} \, dx\) [294]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 71 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx=12 \sqrt [3]{-1+3 x}-\frac {(-1+3 x)^{4/3}}{x}+4 \sqrt {3} \arctan \left (\frac {1-2 \sqrt [3]{-1+3 x}}{\sqrt {3}}\right )+2 \log (x)-6 \log \left (1+\sqrt [3]{-1+3 x}\right ) \] Output:

12*(-1+3*x)^(1/3)-(-1+3*x)^(4/3)/x+2*ln(x)-6*ln(1+(-1+3*x)^(1/3))+4*arctan 
(1/3*(1-2*(-1+3*x)^(1/3))*3^(1/2))*3^(1/2)
 

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.20 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx=\frac {\sqrt [3]{-1+3 x} (1+9 x)}{x}+4 \sqrt {3} \arctan \left (\frac {1-2 \sqrt [3]{-1+3 x}}{\sqrt {3}}\right )-4 \log \left (1+\sqrt [3]{-1+3 x}\right )+2 \log \left (1-\sqrt [3]{-1+3 x}+(-1+3 x)^{2/3}\right ) \] Input:

Integrate[(-1 + 3*x)^(4/3)/x^2,x]
 

Output:

((-1 + 3*x)^(1/3)*(1 + 9*x))/x + 4*Sqrt[3]*ArcTan[(1 - 2*(-1 + 3*x)^(1/3)) 
/Sqrt[3]] - 4*Log[1 + (-1 + 3*x)^(1/3)] + 2*Log[1 - (-1 + 3*x)^(1/3) + (-1 
 + 3*x)^(2/3)]
 

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {51, 60, 70, 16, 1083, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(3 x-1)^{4/3}}{x^2} \, dx\)

\(\Big \downarrow \) 51

\(\displaystyle 4 \int \frac {\sqrt [3]{3 x-1}}{x}dx-\frac {(3 x-1)^{4/3}}{x}\)

\(\Big \downarrow \) 60

\(\displaystyle 4 \left (3 \sqrt [3]{3 x-1}-\int \frac {1}{x (3 x-1)^{2/3}}dx\right )-\frac {(3 x-1)^{4/3}}{x}\)

\(\Big \downarrow \) 70

\(\displaystyle 4 \left (-\frac {3}{2} \int \frac {1}{\sqrt [3]{3 x-1}+1}d\sqrt [3]{3 x-1}-\frac {3}{2} \int \frac {1}{(3 x-1)^{2/3}-\sqrt [3]{3 x-1}+1}d\sqrt [3]{3 x-1}+3 \sqrt [3]{3 x-1}+\frac {\log (x)}{2}\right )-\frac {(3 x-1)^{4/3}}{x}\)

\(\Big \downarrow \) 16

\(\displaystyle 4 \left (-\frac {3}{2} \int \frac {1}{(3 x-1)^{2/3}-\sqrt [3]{3 x-1}+1}d\sqrt [3]{3 x-1}+3 \sqrt [3]{3 x-1}+\frac {\log (x)}{2}-\frac {3}{2} \log \left (\sqrt [3]{3 x-1}+1\right )\right )-\frac {(3 x-1)^{4/3}}{x}\)

\(\Big \downarrow \) 1083

\(\displaystyle 4 \left (3 \int \frac {1}{-(3 x-1)^{2/3}-3}d\left (2 \sqrt [3]{3 x-1}-1\right )+3 \sqrt [3]{3 x-1}+\frac {\log (x)}{2}-\frac {3}{2} \log \left (\sqrt [3]{3 x-1}+1\right )\right )-\frac {(3 x-1)^{4/3}}{x}\)

\(\Big \downarrow \) 217

\(\displaystyle 4 \left (-\sqrt {3} \arctan \left (\frac {2 \sqrt [3]{3 x-1}-1}{\sqrt {3}}\right )+3 \sqrt [3]{3 x-1}+\frac {\log (x)}{2}-\frac {3}{2} \log \left (\sqrt [3]{3 x-1}+1\right )\right )-\frac {(3 x-1)^{4/3}}{x}\)

Input:

Int[(-1 + 3*x)^(4/3)/x^2,x]
 

Output:

-((-1 + 3*x)^(4/3)/x) + 4*(3*(-1 + 3*x)^(1/3) - Sqrt[3]*ArcTan[(-1 + 2*(-1 
 + 3*x)^(1/3))/Sqrt[3]] + Log[x]/2 - (3*Log[1 + (-1 + 3*x)^(1/3)])/2)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 70
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2) 
, x] + (Simp[3/(2*b*q)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] + Simp[3/(2*b*q^2)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.65 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.94

method result size
meijerg \(-\frac {4 \operatorname {signum}\left (x -\frac {1}{3}\right )^{\frac {4}{3}} \left (\frac {3 \Gamma \left (\frac {2}{3}\right )}{4 x}+3 \left (2+\frac {\pi \sqrt {3}}{6}-\frac {\ln \left (3\right )}{2}+\ln \left (x \right )+i \pi \right ) \Gamma \left (\frac {2}{3}\right )-\frac {3 \Gamma \left (\frac {2}{3}\right ) x \operatorname {hypergeom}\left (\left [\frac {2}{3}, 1, 1\right ], \left [2, 3\right ], 3 x \right )}{2}\right )}{3 \Gamma \left (\frac {2}{3}\right ) \left (-\operatorname {signum}\left (x -\frac {1}{3}\right )\right )^{\frac {4}{3}}}\) \(67\)
pseudoelliptic \(\frac {\left (27 x +3\right ) \left (3 x -1\right )^{\frac {1}{3}}-6 x \left (2 \sqrt {3}\, \arctan \left (\frac {\left (2 \left (3 x -1\right )^{\frac {1}{3}}-1\right ) \sqrt {3}}{3}\right )+2 \ln \left (1+\left (3 x -1\right )^{\frac {1}{3}}\right )-\ln \left (\left (3 x -1\right )^{\frac {2}{3}}-\left (3 x -1\right )^{\frac {1}{3}}+1\right )\right )}{\left (\left (3 x -1\right )^{\frac {2}{3}}-\left (3 x -1\right )^{\frac {1}{3}}+1\right ) \left (1+\left (3 x -1\right )^{\frac {1}{3}}\right )}\) \(106\)
derivativedivides \(9 \left (3 x -1\right )^{\frac {1}{3}}+\frac {1+\left (3 x -1\right )^{\frac {1}{3}}}{\left (3 x -1\right )^{\frac {2}{3}}-\left (3 x -1\right )^{\frac {1}{3}}+1}+2 \ln \left (\left (3 x -1\right )^{\frac {2}{3}}-\left (3 x -1\right )^{\frac {1}{3}}+1\right )-4 \sqrt {3}\, \arctan \left (\frac {\left (2 \left (3 x -1\right )^{\frac {1}{3}}-1\right ) \sqrt {3}}{3}\right )-\frac {1}{1+\left (3 x -1\right )^{\frac {1}{3}}}-4 \ln \left (1+\left (3 x -1\right )^{\frac {1}{3}}\right )\) \(109\)
default \(9 \left (3 x -1\right )^{\frac {1}{3}}+\frac {1+\left (3 x -1\right )^{\frac {1}{3}}}{\left (3 x -1\right )^{\frac {2}{3}}-\left (3 x -1\right )^{\frac {1}{3}}+1}+2 \ln \left (\left (3 x -1\right )^{\frac {2}{3}}-\left (3 x -1\right )^{\frac {1}{3}}+1\right )-4 \sqrt {3}\, \arctan \left (\frac {\left (2 \left (3 x -1\right )^{\frac {1}{3}}-1\right ) \sqrt {3}}{3}\right )-\frac {1}{1+\left (3 x -1\right )^{\frac {1}{3}}}-4 \ln \left (1+\left (3 x -1\right )^{\frac {1}{3}}\right )\) \(109\)
risch \(\frac {\left (3 x -1\right )^{\frac {1}{3}}}{x}+\frac {\left (-\frac {4 \left (3 x -1\right )^{\frac {2}{3}} \left (-\operatorname {signum}\left (x -\frac {1}{3}\right )\right )^{\frac {2}{3}} \left (\left (\frac {\pi \sqrt {3}}{6}-\frac {\ln \left (3\right )}{2}+\ln \left (x \right )+i \pi \right ) \Gamma \left (\frac {2}{3}\right )+2 \Gamma \left (\frac {2}{3}\right ) x \operatorname {hypergeom}\left (\left [1, 1, \frac {5}{3}\right ], \left [2, 2\right ], 3 x \right )\right )}{\left (\left (3 x -1\right )^{2}\right )^{\frac {1}{3}} \Gamma \left (\frac {2}{3}\right ) \operatorname {signum}\left (x -\frac {1}{3}\right )^{\frac {2}{3}}}+\frac {9 \left (3 x -1\right )^{\frac {2}{3}} \left (-\operatorname {signum}\left (x -\frac {1}{3}\right )\right )^{\frac {2}{3}} x \operatorname {hypergeom}\left (\left [\frac {2}{3}, 1\right ], \left [2\right ], 3 x \right )}{\left (\left (3 x -1\right )^{2}\right )^{\frac {1}{3}} \operatorname {signum}\left (x -\frac {1}{3}\right )^{\frac {2}{3}}}\right ) \left (\left (3 x -1\right )^{2}\right )^{\frac {1}{3}}}{\left (3 x -1\right )^{\frac {2}{3}}}\) \(146\)
trager \(\frac {\left (1+9 x \right ) \left (3 x -1\right )^{\frac {1}{3}}}{x}+4 \operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right ) \ln \left (\frac {\left (3 x -1\right )^{\frac {2}{3}} \operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right )-\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right ) \left (3 x -1\right )^{\frac {1}{3}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right )-x}{x}\right )-4 \ln \left (-\frac {\left (3 x -1\right )^{\frac {2}{3}} \operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right )-\left (3 x -1\right )^{\frac {2}{3}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right ) \left (3 x -1\right )^{\frac {1}{3}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right ) x +\left (3 x -1\right )^{\frac {1}{3}}+\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right )+2 x -1}{x}\right ) \operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right )+4 \ln \left (-\frac {\left (3 x -1\right )^{\frac {2}{3}} \operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right )-\left (3 x -1\right )^{\frac {2}{3}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right ) \left (3 x -1\right )^{\frac {1}{3}}-\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right ) x +\left (3 x -1\right )^{\frac {1}{3}}+\operatorname {RootOf}\left (\textit {\_Z}^{2}-\textit {\_Z} +1\right )+2 x -1}{x}\right )\) \(273\)

Input:

int((3*x-1)^(4/3)/x^2,x,method=_RETURNVERBOSE)
 

Output:

-4/3/GAMMA(2/3)*signum(x-1/3)^(4/3)/(-signum(x-1/3))^(4/3)*(3/4*GAMMA(2/3) 
/x+3*(2+1/6*Pi*3^(1/2)-1/2*ln(3)+ln(x)+I*Pi)*GAMMA(2/3)-3/2*GAMMA(2/3)*x*h 
ypergeom([2/3,1,1],[2,3],3*x))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.13 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx=-\frac {4 \, \sqrt {3} x \arctan \left (\frac {2}{3} \, \sqrt {3} {\left (3 \, x - 1\right )}^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) - 2 \, x \log \left ({\left (3 \, x - 1\right )}^{\frac {2}{3}} - {\left (3 \, x - 1\right )}^{\frac {1}{3}} + 1\right ) + 4 \, x \log \left ({\left (3 \, x - 1\right )}^{\frac {1}{3}} + 1\right ) - {\left (9 \, x + 1\right )} {\left (3 \, x - 1\right )}^{\frac {1}{3}}}{x} \] Input:

integrate((-1+3*x)^(4/3)/x^2,x, algorithm="fricas")
 

Output:

-(4*sqrt(3)*x*arctan(2/3*sqrt(3)*(3*x - 1)^(1/3) - 1/3*sqrt(3)) - 2*x*log( 
(3*x - 1)^(2/3) - (3*x - 1)^(1/3) + 1) + 4*x*log((3*x - 1)^(1/3) + 1) - (9 
*x + 1)*(3*x - 1)^(1/3))/x
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.22 (sec) , antiderivative size = 541, normalized size of antiderivative = 7.62 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx =\text {Too large to display} \] Input:

integrate((-1+3*x)**(4/3)/x**2,x)
 

Output:

189*3**(1/3)*(x - 1/3)**(4/3)*exp(I*pi/3)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi 
/3)*gamma(10/3) + 3*exp(I*pi/3)*gamma(10/3)) + 84*3**(1/3)*(x - 1/3)**(1/3 
)*exp(I*pi/3)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi/3)*gamma(10/3) + 3*exp(I*pi 
/3)*gamma(10/3)) + 84*(x - 1/3)*log(-3**(1/3)*(x - 1/3)**(1/3)*exp_polar(I 
*pi/3) + 1)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi/3)*gamma(10/3) + 3*exp(I*pi/3 
)*gamma(10/3)) - 84*(x - 1/3)*exp(I*pi/3)*log(-3**(1/3)*(x - 1/3)**(1/3)*e 
xp_polar(I*pi) + 1)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi/3)*gamma(10/3) + 3*ex 
p(I*pi/3)*gamma(10/3)) + 84*(x - 1/3)*exp(2*I*pi/3)*log(-3**(1/3)*(x - 1/3 
)**(1/3)*exp_polar(5*I*pi/3) + 1)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi/3)*gamm 
a(10/3) + 3*exp(I*pi/3)*gamma(10/3)) + 28*log(-3**(1/3)*(x - 1/3)**(1/3)*e 
xp_polar(I*pi/3) + 1)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi/3)*gamma(10/3) + 3* 
exp(I*pi/3)*gamma(10/3)) - 28*exp(I*pi/3)*log(-3**(1/3)*(x - 1/3)**(1/3)*e 
xp_polar(I*pi) + 1)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi/3)*gamma(10/3) + 3*ex 
p(I*pi/3)*gamma(10/3)) + 28*exp(2*I*pi/3)*log(-3**(1/3)*(x - 1/3)**(1/3)*e 
xp_polar(5*I*pi/3) + 1)*gamma(7/3)/(9*(x - 1/3)*exp(I*pi/3)*gamma(10/3) + 
3*exp(I*pi/3)*gamma(10/3))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.07 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx=-4 \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (3 \, x - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) + 9 \, {\left (3 \, x - 1\right )}^{\frac {1}{3}} + \frac {{\left (3 \, x - 1\right )}^{\frac {1}{3}}}{x} + 2 \, \log \left ({\left (3 \, x - 1\right )}^{\frac {2}{3}} - {\left (3 \, x - 1\right )}^{\frac {1}{3}} + 1\right ) - 4 \, \log \left ({\left (3 \, x - 1\right )}^{\frac {1}{3}} + 1\right ) \] Input:

integrate((-1+3*x)^(4/3)/x^2,x, algorithm="maxima")
 

Output:

-4*sqrt(3)*arctan(1/3*sqrt(3)*(2*(3*x - 1)^(1/3) - 1)) + 9*(3*x - 1)^(1/3) 
 + (3*x - 1)^(1/3)/x + 2*log((3*x - 1)^(2/3) - (3*x - 1)^(1/3) + 1) - 4*lo 
g((3*x - 1)^(1/3) + 1)
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.07 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx=-4 \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (3 \, x - 1\right )}^{\frac {1}{3}} - 1\right )}\right ) + 9 \, {\left (3 \, x - 1\right )}^{\frac {1}{3}} + \frac {{\left (3 \, x - 1\right )}^{\frac {1}{3}}}{x} + 2 \, \log \left ({\left (3 \, x - 1\right )}^{\frac {2}{3}} - {\left (3 \, x - 1\right )}^{\frac {1}{3}} + 1\right ) - 4 \, \log \left ({\left (3 \, x - 1\right )}^{\frac {1}{3}} + 1\right ) \] Input:

integrate((-1+3*x)^(4/3)/x^2,x, algorithm="giac")
 

Output:

-4*sqrt(3)*arctan(1/3*sqrt(3)*(2*(3*x - 1)^(1/3) - 1)) + 9*(3*x - 1)^(1/3) 
 + (3*x - 1)^(1/3)/x + 2*log((3*x - 1)^(2/3) - (3*x - 1)^(1/3) + 1) - 4*lo 
g((3*x - 1)^(1/3) + 1)
 

Mupad [B] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.27 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx=9\,{\left (3\,x-1\right )}^{1/3}-4\,\ln \left (144\,{\left (3\,x-1\right )}^{1/3}+144\right )+\frac {{\left (3\,x-1\right )}^{1/3}}{x}+\ln \left (18-36\,{\left (3\,x-1\right )}^{1/3}+\sqrt {3}\,18{}\mathrm {i}\right )\,\left (2+\sqrt {3}\,2{}\mathrm {i}\right )-\ln \left (36\,{\left (3\,x-1\right )}^{1/3}-18+\sqrt {3}\,18{}\mathrm {i}\right )\,\left (-2+\sqrt {3}\,2{}\mathrm {i}\right ) \] Input:

int((3*x - 1)^(4/3)/x^2,x)
 

Output:

9*(3*x - 1)^(1/3) - 4*log(144*(3*x - 1)^(1/3) + 144) + (3*x - 1)^(1/3)/x + 
 log(3^(1/2)*18i - 36*(3*x - 1)^(1/3) + 18)*(3^(1/2)*2i + 2) - log(3^(1/2) 
*18i + 36*(3*x - 1)^(1/3) - 18)*(3^(1/2)*2i - 2)
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.69 \[ \int \frac {(-1+3 x)^{4/3}}{x^2} \, dx=\frac {-4 \sqrt {3}\, \mathit {atan} \left (2 \left (3 x -1\right )^{\frac {1}{6}}-\sqrt {3}\right ) x +4 \sqrt {3}\, \mathit {atan} \left (2 \left (3 x -1\right )^{\frac {1}{6}}+\sqrt {3}\right ) x +9 \left (3 x -1\right )^{\frac {1}{3}} x +\left (3 x -1\right )^{\frac {1}{3}}-4 \,\mathrm {log}\left (\left (3 x -1\right )^{\frac {1}{3}}+1\right ) x +2 \,\mathrm {log}\left (-\left (3 x -1\right )^{\frac {1}{6}} \sqrt {3}+\left (3 x -1\right )^{\frac {1}{3}}+1\right ) x +2 \,\mathrm {log}\left (\left (3 x -1\right )^{\frac {1}{6}} \sqrt {3}+\left (3 x -1\right )^{\frac {1}{3}}+1\right ) x}{x} \] Input:

int((-1+3*x)^(4/3)/x^2,x)
 

Output:

( - 4*sqrt(3)*atan(2*(3*x - 1)**(1/6) - sqrt(3))*x + 4*sqrt(3)*atan(2*(3*x 
 - 1)**(1/6) + sqrt(3))*x + 9*(3*x - 1)**(1/3)*x + (3*x - 1)**(1/3) - 4*lo 
g((3*x - 1)**(1/3) + 1)*x + 2*log( - (3*x - 1)**(1/6)*sqrt(3) + (3*x - 1)* 
*(1/3) + 1)*x + 2*log((3*x - 1)**(1/6)*sqrt(3) + (3*x - 1)**(1/3) + 1)*x)/ 
x