\(\int \frac {1}{(4-5 \sec ^2(x))^{3/2}} \, dx\) [435]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 40 \[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=\frac {1}{8} \arctan \left (\frac {2 \tan (x)}{\sqrt {-1-5 \tan ^2(x)}}\right )-\frac {5 \tan (x)}{4 \sqrt {-1-5 \tan ^2(x)}} \] Output:

1/8*arctan(2*tan(x)/(-1-5*tan(x)^2)^(1/2))-5/4*tan(x)/(-1-5*tan(x)^2)^(1/2 
)
 

Mathematica [A] (warning: unable to verify)

Time = 0.08 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.98 \[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=-\frac {(-3+2 \cos (2 x))^{3/2} \sec ^3(x) \left (\text {arcsinh}(2 \sin (x)) (-3+2 \cos (2 x))+10 \sqrt {3-2 \cos (2 x)} \sin (x)\right )}{8 \left (4-5 \sec ^2(x)\right )^{3/2} \sqrt {-\left (1+4 \sin ^2(x)\right )^2}} \] Input:

Integrate[(4 - 5*Sec[x]^2)^(-3/2),x]
 

Output:

-1/8*((-3 + 2*Cos[2*x])^(3/2)*Sec[x]^3*(ArcSinh[2*Sin[x]]*(-3 + 2*Cos[2*x] 
) + 10*Sqrt[3 - 2*Cos[2*x]]*Sin[x]))/((4 - 5*Sec[x]^2)^(3/2)*Sqrt[-(1 + 4* 
Sin[x]^2)^2])
 

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {3042, 4616, 296, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (4-5 \sec (x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4616

\(\displaystyle \int \frac {1}{\left (-5 \tan ^2(x)-1\right )^{3/2} \left (\tan ^2(x)+1\right )}d\tan (x)\)

\(\Big \downarrow \) 296

\(\displaystyle \frac {1}{4} \int \frac {1}{\sqrt {-5 \tan ^2(x)-1} \left (\tan ^2(x)+1\right )}d\tan (x)-\frac {5 \tan (x)}{4 \sqrt {-5 \tan ^2(x)-1}}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {1}{4} \int \frac {1}{\frac {4 \tan ^2(x)}{-5 \tan ^2(x)-1}+1}d\frac {\tan (x)}{\sqrt {-5 \tan ^2(x)-1}}-\frac {5 \tan (x)}{4 \sqrt {-5 \tan ^2(x)-1}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{8} \arctan \left (\frac {2 \tan (x)}{\sqrt {-5 \tan ^2(x)-1}}\right )-\frac {5 \tan (x)}{4 \sqrt {-5 \tan ^2(x)-1}}\)

Input:

Int[(4 - 5*Sec[x]^2)^(-3/2),x]
 

Output:

ArcTan[(2*Tan[x])/Sqrt[-1 - 5*Tan[x]^2]]/8 - (5*Tan[x])/(4*Sqrt[-1 - 5*Tan 
[x]^2])
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 296
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[(b*c + 2*(p + 1)*(b*c - a*d))/(2*a*(p + 1)*(b*c - a*d))   Int[ 
(a + b*x^2)^(p + 1)*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && N 
eQ[b*c - a*d, 0] && EqQ[2*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1 
]) && NeQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4616
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + b + b*ff^2*x^2)^p 
/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
&& NeQ[a + b, 0] && NeQ[p, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(88\) vs. \(2(32)=64\).

Time = 2.06 (sec) , antiderivative size = 89, normalized size of antiderivative = 2.22

method result size
default \(\frac {-40 \tan \left (x \right )+50 \sec \left (x \right )^{2} \tan \left (x \right )+\sqrt {\frac {4 \cos \left (x \right )^{2}-5}{\left (1+\cos \left (x \right )\right )^{2}}}\, \arctan \left (\frac {2 \csc \left (x \right )-2 \cot \left (x \right )}{\sqrt {\frac {4 \cos \left (x \right )^{2}-5}{\left (1+\cos \left (x \right )\right )^{2}}}}\right ) \left (4+4 \sec \left (x \right )-5 \sec \left (x \right )^{2}-5 \sec \left (x \right )^{3}\right )}{8 \left (4-5 \sec \left (x \right )^{2}\right )^{\frac {3}{2}}}\) \(89\)

Input:

int(1/(4-5*sec(x)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/8/(4-5*sec(x)^2)^(3/2)*(-40*tan(x)+50*sec(x)^2*tan(x)+((4*cos(x)^2-5)/(1 
+cos(x))^2)^(1/2)*arctan(2/((4*cos(x)^2-5)/(1+cos(x))^2)^(1/2)*(csc(x)-cot 
(x)))*(4+4*sec(x)-5*sec(x)^2-5*sec(x)^3))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 115 vs. \(2 (32) = 64\).

Time = 0.08 (sec) , antiderivative size = 115, normalized size of antiderivative = 2.88 \[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=-\frac {20 \, \sqrt {\frac {4 \, \cos \left (x\right )^{2} - 5}{\cos \left (x\right )^{2}}} \cos \left (x\right ) \sin \left (x\right ) - {\left (4 \, \cos \left (x\right )^{2} - 5\right )} \arctan \left (\frac {4 \, {\left (8 \, \cos \left (x\right )^{3} - 9 \, \cos \left (x\right )\right )} \sqrt {\frac {4 \, \cos \left (x\right )^{2} - 5}{\cos \left (x\right )^{2}}} \sin \left (x\right ) + \cos \left (x\right ) \sin \left (x\right )}{64 \, \cos \left (x\right )^{4} - 143 \, \cos \left (x\right )^{2} + 80}\right ) + {\left (4 \, \cos \left (x\right )^{2} - 5\right )} \arctan \left (\frac {\sin \left (x\right )}{\cos \left (x\right )}\right )}{16 \, {\left (4 \, \cos \left (x\right )^{2} - 5\right )}} \] Input:

integrate(1/(4-5*sec(x)^2)^(3/2),x, algorithm="fricas")
 

Output:

-1/16*(20*sqrt((4*cos(x)^2 - 5)/cos(x)^2)*cos(x)*sin(x) - (4*cos(x)^2 - 5) 
*arctan((4*(8*cos(x)^3 - 9*cos(x))*sqrt((4*cos(x)^2 - 5)/cos(x)^2)*sin(x) 
+ cos(x)*sin(x))/(64*cos(x)^4 - 143*cos(x)^2 + 80)) + (4*cos(x)^2 - 5)*arc 
tan(sin(x)/cos(x)))/(4*cos(x)^2 - 5)
 

Sympy [F]

\[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=\int \frac {1}{\left (4 - 5 \sec ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(4-5*sec(x)**2)**(3/2),x)
 

Output:

Integral((4 - 5*sec(x)**2)**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-5 \, \sec \left (x\right )^{2} + 4\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(4-5*sec(x)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((-5*sec(x)^2 + 4)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-5 \, \sec \left (x\right )^{2} + 4\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(4-5*sec(x)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate((-5*sec(x)^2 + 4)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=\int \frac {1}{{\left (4-\frac {5}{{\cos \left (x\right )}^2}\right )}^{3/2}} \,d x \] Input:

int(1/(4 - 5/cos(x)^2)^(3/2),x)
 

Output:

int(1/(4 - 5/cos(x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (4-5 \sec ^2(x)\right )^{3/2}} \, dx=\int \frac {\sqrt {-5 \sec \left (x \right )^{2}+4}}{25 \sec \left (x \right )^{4}-40 \sec \left (x \right )^{2}+16}d x \] Input:

int(1/(4-5*sec(x)^2)^(3/2),x)
 

Output:

int(sqrt( - 5*sec(x)**2 + 4)/(25*sec(x)**4 - 40*sec(x)**2 + 16),x)