\(\int \frac {x}{\sqrt {-1+x^3} (-10+6 \sqrt {3}+x^3)} \, dx\) [89]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 214 \[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=-\frac {\left (2+\sqrt {3}\right ) \arctan \left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}\right ) (1-x)}{\sqrt {2} \sqrt {-1+x^3}}\right )}{2 \sqrt {2} 3^{3/4}}+\frac {\left (2+\sqrt {3}\right ) \arctan \left (\frac {\left (1+\sqrt {3}\right ) \sqrt {-1+x^3}}{\sqrt {2} 3^{3/4}}\right )}{3 \sqrt {2} 3^{3/4}}+\frac {\left (2+\sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt [4]{3} \left (1+\sqrt {3}\right ) (1-x)}{\sqrt {2} \sqrt {-1+x^3}}\right )}{6 \sqrt {2} \sqrt [4]{3}}+\frac {\left (2+\sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}+2 x\right )}{\sqrt {2} \sqrt {-1+x^3}}\right )}{3 \sqrt {2} \sqrt [4]{3}} \] Output:

-1/12*arctan(1/2*3^(1/4)*(1-x)*(1-3^(1/2))*2^(1/2)/(x^3-1)^(1/2))*(2+3^(1/ 
2))*3^(1/4)*2^(1/2)+1/18*arctan(1/6*(1+3^(1/2))*(x^3-1)^(1/2)*3^(1/4)*2^(1 
/2))*(2+3^(1/2))*3^(1/4)*2^(1/2)+1/18*arctanh(1/2*3^(1/4)*(1+2*x-3^(1/2))* 
2^(1/2)/(x^3-1)^(1/2))*(2+3^(1/2))*3^(3/4)*2^(1/2)+1/36*arctanh(1/2*3^(1/4 
)*(1-x)*(1+3^(1/2))*2^(1/2)/(x^3-1)^(1/2))*(2+3^(1/2))*3^(3/4)*2^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 10.05 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.32 \[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=\frac {x^2 \sqrt {1-x^3} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},x^3,-\frac {x^3}{-10+6 \sqrt {3}}\right )}{4 \left (-5+3 \sqrt {3}\right ) \sqrt {-1+x^3}} \] Input:

Integrate[x/(Sqrt[-1 + x^3]*(-10 + 6*Sqrt[3] + x^3)),x]
 

Output:

(x^2*Sqrt[1 - x^3]*AppellF1[2/3, 1/2, 1, 5/3, x^3, -(x^3/(-10 + 6*Sqrt[3]) 
)])/(4*(-5 + 3*Sqrt[3])*Sqrt[-1 + x^3])
 

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {990}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\sqrt {x^3-1} \left (x^3+6 \sqrt {3}-10\right )} \, dx\)

\(\Big \downarrow \) 990

\(\displaystyle -\frac {\left (2+\sqrt {3}\right ) \arctan \left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}\right ) (1-x)}{\sqrt {2} \sqrt {x^3-1}}\right )}{2 \sqrt {2} 3^{3/4}}+\frac {\left (2+\sqrt {3}\right ) \arctan \left (\frac {\left (1+\sqrt {3}\right ) \sqrt {x^3-1}}{\sqrt {2} 3^{3/4}}\right )}{3 \sqrt {2} 3^{3/4}}+\frac {\left (2+\sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt [4]{3} \left (1+\sqrt {3}\right ) (1-x)}{\sqrt {2} \sqrt {x^3-1}}\right )}{6 \sqrt {2} \sqrt [4]{3}}+\frac {\left (2+\sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt [4]{3} \left (2 x-\sqrt {3}+1\right )}{\sqrt {2} \sqrt {x^3-1}}\right )}{3 \sqrt {2} \sqrt [4]{3}}\)

Input:

Int[x/(Sqrt[-1 + x^3]*(-10 + 6*Sqrt[3] + x^3)),x]
 

Output:

-1/2*((2 + Sqrt[3])*ArcTan[(3^(1/4)*(1 - Sqrt[3])*(1 - x))/(Sqrt[2]*Sqrt[- 
1 + x^3])])/(Sqrt[2]*3^(3/4)) + ((2 + Sqrt[3])*ArcTan[((1 + Sqrt[3])*Sqrt[ 
-1 + x^3])/(Sqrt[2]*3^(3/4))])/(3*Sqrt[2]*3^(3/4)) + ((2 + Sqrt[3])*ArcTan 
h[(3^(1/4)*(1 + Sqrt[3])*(1 - x))/(Sqrt[2]*Sqrt[-1 + x^3])])/(6*Sqrt[2]*3^ 
(1/4)) + ((2 + Sqrt[3])*ArcTanh[(3^(1/4)*(1 - Sqrt[3] + 2*x))/(Sqrt[2]*Sqr 
t[-1 + x^3])])/(3*Sqrt[2]*3^(1/4))
 

Defintions of rubi rules used

rule 990
Int[(x_)/(Sqrt[(a_) + (b_.)*(x_)^3]*((c_) + (d_.)*(x_)^3)), x_Symbol] :> Wi 
th[{q = Rt[b/a, 3], r = Simplify[(b*c - 10*a*d)/(6*a*d)]}, Simp[q*(2 - r)*( 
ArcTanh[(1 - r)*(Sqrt[a + b*x^3]/(Sqrt[2]*Rt[-a, 2]*r^(3/2)))]/(3*Sqrt[2]*R 
t[-a, 2]*d*r^(3/2))), x] + (-Simp[q*(2 - r)*(ArcTanh[Rt[-a, 2]*Sqrt[r]*(1 + 
 r)*((1 + q*x)/(Sqrt[2]*Sqrt[a + b*x^3]))]/(2*Sqrt[2]*Rt[-a, 2]*d*r^(3/2))) 
, x] - Simp[q*(2 - r)*(ArcTan[Rt[-a, 2]*Sqrt[r]*((1 + r - 2*q*x)/(Sqrt[2]*S 
qrt[a + b*x^3]))]/(3*Sqrt[2]*Rt[-a, 2]*d*Sqrt[r])), x] - Simp[q*(2 - r)*(Ar 
cTan[Rt[-a, 2]*(1 - r)*Sqrt[r]*((1 + q*x)/(Sqrt[2]*Sqrt[a + b*x^3]))]/(6*Sq 
rt[2]*Rt[-a, 2]*d*Sqrt[r])), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a* 
d, 0] && EqQ[b^2*c^2 - 20*a*b*c*d - 8*a^2*d^2, 0] && NegQ[a]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 61.29 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.64

method result size
default \(\frac {\left (\sqrt {3}-1\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {3}\, \operatorname {EllipticPi}\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}{3}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{9 \left (-2+\sqrt {3}\right ) \sqrt {x^{3}-1}}-\frac {\sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{2}+\left (1-\sqrt {3}\right ) \textit {\_Z} -2 \sqrt {3}+4\right )}{\sum }\frac {\left (-\underline {\hspace {1.25 ex}}\alpha \sqrt {3}-\underline {\hspace {1.25 ex}}\alpha -2\right ) \left (-3-i \sqrt {3}\right ) \sqrt {\frac {-1+x}{-3-i \sqrt {3}}}\, \sqrt {\frac {-i \sqrt {3}+2 x +1}{3-i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}+2 x +1}{3+i \sqrt {3}}}\, \left (1+2 \underline {\hspace {1.25 ex}}\alpha +\underline {\hspace {1.25 ex}}\alpha \sqrt {3}\right ) \operatorname {EllipticPi}\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {i \underline {\hspace {1.25 ex}}\alpha \sqrt {3}}{3}+\frac {i \underline {\hspace {1.25 ex}}\alpha }{2}+\frac {\underline {\hspace {1.25 ex}}\alpha \sqrt {3}}{2}+\underline {\hspace {1.25 ex}}\alpha +\frac {i \sqrt {3}}{6}+\frac {1}{2}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\left (-\sqrt {3}+2 \underline {\hspace {1.25 ex}}\alpha +1\right ) \sqrt {x^{3}-1}}\right )}{18}\) \(350\)
elliptic \(\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\frac {2 \left (1-\sqrt {3}\right )^{2} \sqrt {3}}{9}+\frac {\left (1-\sqrt {3}\right )^{2}}{3}+\frac {2 \left (1-\sqrt {3}\right ) \sqrt {3}}{9}+\frac {2}{3}-\frac {\sqrt {3}}{9}\right ) \operatorname {EllipticPi}\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {i \left (1-\sqrt {3}\right )^{2} \sqrt {3}}{6}+\frac {i \left (1-\sqrt {3}\right )^{2}}{3}+\frac {\left (1-\sqrt {3}\right )^{2} \sqrt {3}}{3}+\frac {\left (1-\sqrt {3}\right )^{2}}{2}+\frac {i \left (1-\sqrt {3}\right ) \sqrt {3}}{6}+\frac {i \left (1-\sqrt {3}\right )}{3}+\frac {\left (1-\sqrt {3}\right ) \sqrt {3}}{3}+1+\frac {i}{3}-\frac {\sqrt {3}}{6}+\frac {i \sqrt {3}}{6}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{3 \left (1-\sqrt {3}\right ) \sqrt {x^{3}-1}}+\frac {\sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{2}+\left (1-\sqrt {3}\right ) \textit {\_Z} -2 \sqrt {3}+4\right )}{\sum }\frac {\left (-3-i \sqrt {3}\right ) \sqrt {\frac {-1+x}{-3-i \sqrt {3}}}\, \sqrt {\frac {-i \sqrt {3}+2 x +1}{3-i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}+2 x +1}{3+i \sqrt {3}}}\, \left (3 \underline {\hspace {1.25 ex}}\alpha ^{2}+3 \underline {\hspace {1.25 ex}}\alpha +3+2 \sqrt {3}\, \left (\underline {\hspace {1.25 ex}}\alpha ^{2}+\underline {\hspace {1.25 ex}}\alpha +1\right )\right ) \operatorname {EllipticPi}\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \frac {i \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}}{6}+\frac {i \underline {\hspace {1.25 ex}}\alpha ^{2}}{3}+\frac {\underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}}{3}+\frac {\underline {\hspace {1.25 ex}}\alpha ^{2}}{2}+\frac {i \underline {\hspace {1.25 ex}}\alpha \sqrt {3}}{6}+\frac {i \underline {\hspace {1.25 ex}}\alpha }{3}+\frac {\underline {\hspace {1.25 ex}}\alpha \sqrt {3}}{3}+\frac {\underline {\hspace {1.25 ex}}\alpha }{2}+\frac {i \sqrt {3}}{6}+\frac {1}{2}+\frac {i}{3}+\frac {\sqrt {3}}{3}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\underline {\hspace {1.25 ex}}\alpha \sqrt {x^{3}-1}}\right )}{27}\) \(505\)
trager \(\text {Expression too large to display}\) \(4176\)

Input:

int(x/(-10+x^3+6*3^(1/2))/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/9*(3^(1/2)-1)/(-2+3^(1/2))*(-3/2-1/2*I*3^(1/2))*((-1+x)/(-3/2-1/2*I*3^(1 
/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2* 
I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*3^(1/2)*EllipticPi(((- 
1+x)/(-3/2-1/2*I*3^(1/2)))^(1/2),1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2 
*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))-1/18*2^(1/2)*sum((-_alpha*3^(1/2)- 
_alpha-2)/(-3^(1/2)+2*_alpha+1)*(-3-I*3^(1/2))*((-1+x)/(-3-I*3^(1/2)))^(1/ 
2)*((-I*3^(1/2)+2*x+1)/(3-I*3^(1/2)))^(1/2)*((I*3^(1/2)+2*x+1)/(I*3^(1/2)+ 
3))^(1/2)/(x^3-1)^(1/2)*(1+2*_alpha+_alpha*3^(1/2))*EllipticPi(((-1+x)/(-3 
/2-1/2*I*3^(1/2)))^(1/2),1/3*I*_alpha*3^(1/2)+1/2*I*_alpha+1/2*_alpha*3^(1 
/2)+_alpha+1/6*I*3^(1/2)+1/2,((3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/ 
2)),_alpha=RootOf(_Z^2+(1-3^(1/2))*_Z-2*3^(1/2)+4))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 516 vs. \(2 (148) = 296\).

Time = 0.20 (sec) , antiderivative size = 516, normalized size of antiderivative = 2.41 \[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=-\frac {1}{36} \, \sqrt {14 \, \sqrt {3} + 24} \arctan \left (-\frac {{\left (3 \, x^{2} - \sqrt {3} {\left (x^{2} + 10 \, x - 8\right )} + 18 \, x - 12\right )} \sqrt {14 \, \sqrt {3} + 24}}{12 \, \sqrt {x^{3} - 1}}\right ) - \frac {1}{18} \, \sqrt {\frac {7}{2} \, \sqrt {3} + 6} \arctan \left (\frac {\sqrt {x^{3} - 1} {\left (\sqrt {3} {\left (x + 8\right )} - 3 \, x - 12\right )} \sqrt {\frac {7}{2} \, \sqrt {3} + 6}}{3 \, {\left (x^{2} + x - 2\right )}}\right ) - \frac {1}{24} \, \sqrt {\frac {7}{6} \, \sqrt {3} + 2} \log \left (\frac {x^{8} - 14 \, x^{7} + 70 \, x^{6} - 20 \, x^{5} + 100 \, x^{4} - 32 \, x^{3} - 8 \, x^{2} + 6 \, {\left (5 \, x^{6} - 46 \, x^{5} + 62 \, x^{4} - 68 \, x^{3} + 28 \, x^{2} - \sqrt {3} {\left (3 \, x^{6} - 26 \, x^{5} + 38 \, x^{4} - 36 \, x^{3} + 20 \, x^{2} - 8 \, x\right )} - 8 \, x\right )} \sqrt {x^{3} - 1} \sqrt {\frac {7}{6} \, \sqrt {3} + 2} + 12 \, \sqrt {3} {\left (x^{7} - 2 \, x^{6} + 4 \, x^{5} - x^{4} + 2 \, x^{3} - 4 \, x^{2}\right )} - 32 \, x + 16}{x^{8} + 4 \, x^{7} + 16 \, x^{6} + 16 \, x^{5} + 28 \, x^{4} - 32 \, x^{3} + 64 \, x^{2} - 32 \, x + 16}\right ) + \frac {1}{24} \, \sqrt {\frac {7}{6} \, \sqrt {3} + 2} \log \left (\frac {x^{8} - 14 \, x^{7} + 70 \, x^{6} - 20 \, x^{5} + 100 \, x^{4} - 32 \, x^{3} - 8 \, x^{2} - 6 \, {\left (5 \, x^{6} - 46 \, x^{5} + 62 \, x^{4} - 68 \, x^{3} + 28 \, x^{2} - \sqrt {3} {\left (3 \, x^{6} - 26 \, x^{5} + 38 \, x^{4} - 36 \, x^{3} + 20 \, x^{2} - 8 \, x\right )} - 8 \, x\right )} \sqrt {x^{3} - 1} \sqrt {\frac {7}{6} \, \sqrt {3} + 2} + 12 \, \sqrt {3} {\left (x^{7} - 2 \, x^{6} + 4 \, x^{5} - x^{4} + 2 \, x^{3} - 4 \, x^{2}\right )} - 32 \, x + 16}{x^{8} + 4 \, x^{7} + 16 \, x^{6} + 16 \, x^{5} + 28 \, x^{4} - 32 \, x^{3} + 64 \, x^{2} - 32 \, x + 16}\right ) \] Input:

integrate(x/(-10+x^3+6*3^(1/2))/(x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

-1/36*sqrt(14*sqrt(3) + 24)*arctan(-1/12*(3*x^2 - sqrt(3)*(x^2 + 10*x - 8) 
 + 18*x - 12)*sqrt(14*sqrt(3) + 24)/sqrt(x^3 - 1)) - 1/18*sqrt(7/2*sqrt(3) 
 + 6)*arctan(1/3*sqrt(x^3 - 1)*(sqrt(3)*(x + 8) - 3*x - 12)*sqrt(7/2*sqrt( 
3) + 6)/(x^2 + x - 2)) - 1/24*sqrt(7/6*sqrt(3) + 2)*log((x^8 - 14*x^7 + 70 
*x^6 - 20*x^5 + 100*x^4 - 32*x^3 - 8*x^2 + 6*(5*x^6 - 46*x^5 + 62*x^4 - 68 
*x^3 + 28*x^2 - sqrt(3)*(3*x^6 - 26*x^5 + 38*x^4 - 36*x^3 + 20*x^2 - 8*x) 
- 8*x)*sqrt(x^3 - 1)*sqrt(7/6*sqrt(3) + 2) + 12*sqrt(3)*(x^7 - 2*x^6 + 4*x 
^5 - x^4 + 2*x^3 - 4*x^2) - 32*x + 16)/(x^8 + 4*x^7 + 16*x^6 + 16*x^5 + 28 
*x^4 - 32*x^3 + 64*x^2 - 32*x + 16)) + 1/24*sqrt(7/6*sqrt(3) + 2)*log((x^8 
 - 14*x^7 + 70*x^6 - 20*x^5 + 100*x^4 - 32*x^3 - 8*x^2 - 6*(5*x^6 - 46*x^5 
 + 62*x^4 - 68*x^3 + 28*x^2 - sqrt(3)*(3*x^6 - 26*x^5 + 38*x^4 - 36*x^3 + 
20*x^2 - 8*x) - 8*x)*sqrt(x^3 - 1)*sqrt(7/6*sqrt(3) + 2) + 12*sqrt(3)*(x^7 
 - 2*x^6 + 4*x^5 - x^4 + 2*x^3 - 4*x^2) - 32*x + 16)/(x^8 + 4*x^7 + 16*x^6 
 + 16*x^5 + 28*x^4 - 32*x^3 + 64*x^2 - 32*x + 16))
 

Sympy [F]

\[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=\int \frac {x}{\sqrt {\left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x^{3} - 10 + 6 \sqrt {3}\right )}\, dx \] Input:

integrate(x/(-10+x**3+6*3**(1/2))/(x**3-1)**(1/2),x)
 

Output:

Integral(x/(sqrt((x - 1)*(x**2 + x + 1))*(x**3 - 10 + 6*sqrt(3))), x)
 

Maxima [F]

\[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=\int { \frac {x}{{\left (x^{3} + 6 \, \sqrt {3} - 10\right )} \sqrt {x^{3} - 1}} \,d x } \] Input:

integrate(x/(-10+x^3+6*3^(1/2))/(x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x/((x^3 + 6*sqrt(3) - 10)*sqrt(x^3 - 1)), x)
 

Giac [F]

\[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=\int { \frac {x}{{\left (x^{3} + 6 \, \sqrt {3} - 10\right )} \sqrt {x^{3} - 1}} \,d x } \] Input:

integrate(x/(-10+x^3+6*3^(1/2))/(x^3-1)^(1/2),x, algorithm="giac")
 

Output:

integrate(x/((x^3 + 6*sqrt(3) - 10)*sqrt(x^3 - 1)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=\int \frac {x}{\sqrt {x^3-1}\,\left (x^3+6\,\sqrt {3}-10\right )} \,d x \] Input:

int(x/((x^3 - 1)^(1/2)*(6*3^(1/2) + x^3 - 10)),x)
 

Output:

int(x/((x^3 - 1)^(1/2)*(6*3^(1/2) + x^3 - 10)), x)
 

Reduce [F]

\[ \int \frac {x}{\sqrt {-1+x^3} \left (-10+6 \sqrt {3}+x^3\right )} \, dx=-6 \sqrt {3}\, \left (\int \frac {\sqrt {x^{3}-1}\, x}{x^{9}-21 x^{6}+12 x^{3}+8}d x \right )+\int \frac {\sqrt {x^{3}-1}\, x^{4}}{x^{9}-21 x^{6}+12 x^{3}+8}d x -10 \left (\int \frac {\sqrt {x^{3}-1}\, x}{x^{9}-21 x^{6}+12 x^{3}+8}d x \right ) \] Input:

int(x/(-10+x^3+6*3^(1/2))/(x^3-1)^(1/2),x)
 

Output:

 - 6*sqrt(3)*int((sqrt(x**3 - 1)*x)/(x**9 - 21*x**6 + 12*x**3 + 8),x) + in 
t((sqrt(x**3 - 1)*x**4)/(x**9 - 21*x**6 + 12*x**3 + 8),x) - 10*int((sqrt(x 
**3 - 1)*x)/(x**9 - 21*x**6 + 12*x**3 + 8),x)