\(\int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx\) [13]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 81 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=-\frac {1}{2} \sqrt {1-i} \text {arctanh}\left (\frac {1+i x}{\sqrt {1-i} \sqrt {1-i x^2}}\right )-\frac {1}{2} \sqrt {1+i} \text {arctanh}\left (\frac {1-i x}{\sqrt {1+i} \sqrt {1+i x^2}}\right ) \] Output:

-1/2*arctanh((1+I*x)/(1-I)^(1/2)/(1-I*x^2)^(1/2))*(1-I)^(1/2)-1/2*arctanh( 
(1-I*x)/(1+I)^(1/2)/(1+I*x^2)^(1/2))*(1+I)^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(205\) vs. \(2(81)=162\).

Time = 1.09 (sec) , antiderivative size = 205, normalized size of antiderivative = 2.53 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\frac {\sqrt {-1+\sqrt {2}} \left (\arctan \left (\sqrt {1+\sqrt {2}} \sqrt {x^2+\sqrt {1+x^4}}\right )-\arctan \left (\frac {\sqrt {2 \left (-1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )\right )-\sqrt {1+\sqrt {2}} \text {arctanh}\left (\sqrt {-1+\sqrt {2}} \sqrt {x^2+\sqrt {1+x^4}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )}{\sqrt {2}} \] Input:

Integrate[Sqrt[x^2 + Sqrt[1 + x^4]]/((1 + x)*Sqrt[1 + x^4]),x]
 

Output:

(Sqrt[-1 + Sqrt[2]]*(ArcTan[Sqrt[1 + Sqrt[2]]*Sqrt[x^2 + Sqrt[1 + x^4]]] - 
 ArcTan[(Sqrt[2*(-1 + Sqrt[2])]*x*Sqrt[x^2 + Sqrt[1 + x^4]])/(1 + x^2 + Sq 
rt[1 + x^4])]) - Sqrt[1 + Sqrt[2]]*ArcTanh[Sqrt[-1 + Sqrt[2]]*Sqrt[x^2 + S 
qrt[1 + x^4]]] + Sqrt[1 + Sqrt[2]]*ArcTanh[(Sqrt[2*(1 + Sqrt[2])]*x*Sqrt[x 
^2 + Sqrt[1 + x^4]])/(1 + x^2 + Sqrt[1 + x^4])])/Sqrt[2]
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {2558, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {x^4+1}+x^2}}{(x+1) \sqrt {x^4+1}} \, dx\)

\(\Big \downarrow \) 2558

\(\displaystyle \left (\frac {1}{2}-\frac {i}{2}\right ) \int \frac {1}{(x+1) \sqrt {1-i x^2}}dx+\left (\frac {1}{2}+\frac {i}{2}\right ) \int \frac {1}{(x+1) \sqrt {i x^2+1}}dx\)

\(\Big \downarrow \) 488

\(\displaystyle \left (-\frac {1}{2}+\frac {i}{2}\right ) \int \frac {1}{(1-i)-\frac {(i x+1)^2}{1-i x^2}}d\frac {i x+1}{\sqrt {1-i x^2}}-\left (\frac {1}{2}+\frac {i}{2}\right ) \int \frac {1}{(1+i)-\frac {(1-i x)^2}{i x^2+1}}d\frac {1-i x}{\sqrt {i x^2+1}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {1}{2} \sqrt {1-i} \text {arctanh}\left (\frac {1+i x}{\sqrt {1-i} \sqrt {1-i x^2}}\right )-\frac {1}{2} \sqrt {1+i} \text {arctanh}\left (\frac {1-i x}{\sqrt {1+i} \sqrt {1+i x^2}}\right )\)

Input:

Int[Sqrt[x^2 + Sqrt[1 + x^4]]/((1 + x)*Sqrt[1 + x^4]),x]
 

Output:

-1/2*(Sqrt[1 - I]*ArcTanh[(1 + I*x)/(Sqrt[1 - I]*Sqrt[1 - I*x^2])]) - (Sqr 
t[1 + I]*ArcTanh[(1 - I*x)/(Sqrt[1 + I]*Sqrt[1 + I*x^2])])/2
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 2558
Int[(((c_.) + (d_.)*(x_))^(m_.)*Sqrt[(b_.)*(x_)^2 + Sqrt[(a_) + (e_.)*(x_)^ 
4]])/Sqrt[(a_) + (e_.)*(x_)^4], x_Symbol] :> Simp[(1 - I)/2   Int[(c + d*x) 
^m/Sqrt[Sqrt[a] - I*b*x^2], x], x] + Simp[(1 + I)/2   Int[(c + d*x)^m/Sqrt[ 
Sqrt[a] + I*b*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[e, b^2] && G 
tQ[a, 0]
 
Maple [F]

\[\int \frac {\sqrt {x^{2}+\sqrt {x^{4}+1}}}{\left (1+x \right ) \sqrt {x^{4}+1}}d x\]

Input:

int((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x)
 

Output:

int((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 332 vs. \(2 (49) = 98\).

Time = 3.27 (sec) , antiderivative size = 332, normalized size of antiderivative = 4.10 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\frac {1}{2} \, \sqrt {\frac {1}{2} \, \sqrt {2} - \frac {1}{2}} \arctan \left (\frac {{\left (2 \, x^{2} - \sqrt {2} {\left (x^{3} - x^{2} + x + 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} {\left (x - 1\right )} - 2\right )} - 2 \, x\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} \sqrt {\frac {1}{2} \, \sqrt {2} - \frac {1}{2}}}{x^{2} - 2 \, x + 1}\right ) - \frac {1}{4} \, \sqrt {\frac {1}{2} \, \sqrt {2} + \frac {1}{2}} \log \left (-\frac {{\left (2 \, x^{3} - \sqrt {2} {\left (x^{3} - x^{2} - x - 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} {\left (x - 1\right )} - 2 \, x\right )} - 2\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + 2 \, {\left (x^{2} - \sqrt {2} {\left (x^{2} + 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} - 2\right )} + 1\right )} \sqrt {\frac {1}{2} \, \sqrt {2} + \frac {1}{2}}}{x^{2} + 2 \, x + 1}\right ) + \frac {1}{4} \, \sqrt {\frac {1}{2} \, \sqrt {2} + \frac {1}{2}} \log \left (-\frac {{\left (2 \, x^{3} - \sqrt {2} {\left (x^{3} - x^{2} - x - 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} {\left (x - 1\right )} - 2 \, x\right )} - 2\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} - 2 \, {\left (x^{2} - \sqrt {2} {\left (x^{2} + 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} - 2\right )} + 1\right )} \sqrt {\frac {1}{2} \, \sqrt {2} + \frac {1}{2}}}{x^{2} + 2 \, x + 1}\right ) \] Input:

integrate((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x, algorithm="fric 
as")
 

Output:

1/2*sqrt(1/2*sqrt(2) - 1/2)*arctan((2*x^2 - sqrt(2)*(x^3 - x^2 + x + 1) + 
sqrt(x^4 + 1)*(sqrt(2)*(x - 1) - 2) - 2*x)*sqrt(x^2 + sqrt(x^4 + 1))*sqrt( 
1/2*sqrt(2) - 1/2)/(x^2 - 2*x + 1)) - 1/4*sqrt(1/2*sqrt(2) + 1/2)*log(-((2 
*x^3 - sqrt(2)*(x^3 - x^2 - x - 1) + sqrt(x^4 + 1)*(sqrt(2)*(x - 1) - 2*x) 
 - 2)*sqrt(x^2 + sqrt(x^4 + 1)) + 2*(x^2 - sqrt(2)*(x^2 + 1) + sqrt(x^4 + 
1)*(sqrt(2) - 2) + 1)*sqrt(1/2*sqrt(2) + 1/2))/(x^2 + 2*x + 1)) + 1/4*sqrt 
(1/2*sqrt(2) + 1/2)*log(-((2*x^3 - sqrt(2)*(x^3 - x^2 - x - 1) + sqrt(x^4 
+ 1)*(sqrt(2)*(x - 1) - 2*x) - 2)*sqrt(x^2 + sqrt(x^4 + 1)) - 2*(x^2 - sqr 
t(2)*(x^2 + 1) + sqrt(x^4 + 1)*(sqrt(2) - 2) + 1)*sqrt(1/2*sqrt(2) + 1/2)) 
/(x^2 + 2*x + 1))
 

Sympy [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\left (x + 1\right ) \sqrt {x^{4} + 1}}\, dx \] Input:

integrate((x**2+(x**4+1)**(1/2))**(1/2)/(1+x)/(x**4+1)**(1/2),x)
 

Output:

Integral(sqrt(x**2 + sqrt(x**4 + 1))/((x + 1)*sqrt(x**4 + 1)), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1} {\left (x + 1\right )}} \,d x } \] Input:

integrate((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x, algorithm="maxi 
ma")
 

Output:

integrate(sqrt(x^2 + sqrt(x^4 + 1))/(sqrt(x^4 + 1)*(x + 1)), x)
 

Giac [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1} {\left (x + 1\right )}} \,d x } \] Input:

integrate((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x, algorithm="giac 
")
 

Output:

integrate(sqrt(x^2 + sqrt(x^4 + 1))/(sqrt(x^4 + 1)*(x + 1)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int \frac {\sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1}\,\left (x+1\right )} \,d x \] Input:

int(((x^4 + 1)^(1/2) + x^2)^(1/2)/((x^4 + 1)^(1/2)*(x + 1)),x)
 

Output:

int(((x^4 + 1)^(1/2) + x^2)^(1/2)/((x^4 + 1)^(1/2)*(x + 1)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int \frac {\sqrt {\sqrt {x^{4}+1}+x^{2}}\, \sqrt {x^{4}+1}}{x^{5}+x^{4}+x +1}d x \] Input:

int((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x)
 

Output:

int((sqrt(sqrt(x**4 + 1) + x**2)*sqrt(x**4 + 1))/(x**5 + x**4 + x + 1),x)