\(\int \frac {t^3}{\sqrt {4+t^3}} \, dt\) [41]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 13, antiderivative size = 172 \[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\frac {2}{5} t \sqrt {4+t^3}-\frac {8\ 2^{2/3} \sqrt {2+\sqrt {3}} \left (2^{2/3}+t\right ) \sqrt {\frac {2 \sqrt [3]{2}-2^{2/3} t+t^2}{\left (2^{2/3} \left (1+\sqrt {3}\right )+t\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {2^{2/3} \left (1-\sqrt {3}\right )+t}{2^{2/3} \left (1+\sqrt {3}\right )+t}\right ),-7-4 \sqrt {3}\right )}{5 \sqrt [4]{3} \sqrt {\frac {2^{2/3}+t}{\left (2^{2/3} \left (1+\sqrt {3}\right )+t\right )^2}} \sqrt {4+t^3}} \] Output:

2/5*t*(t^3+4)^(1/2)-8/15*2^(2/3)*(2^(2/3)+t)*EllipticF((t+2^(2/3)*(1-3^(1/ 
2)))/(t+2^(2/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((2* 
2^(1/3)-2^(2/3)*t+t^2)/(t+2^(2/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/(t^3+4)^(1 
/2)/((2^(2/3)+t)/(t+2^(2/3)*(1+3^(1/2)))^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.73 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.20 \[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\frac {2}{5} t \left (\sqrt {4+t^3}-2 \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {t^3}{4}\right )\right ) \] Input:

Integrate[t^3/Sqrt[4 + t^3],t]
 

Output:

(2*t*(Sqrt[4 + t^3] - 2*Hypergeometric2F1[1/3, 1/2, 4/3, -1/4*t^3]))/5
 

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {843, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {t^3}{\sqrt {t^3+4}} \, dt\)

\(\Big \downarrow \) 843

\(\displaystyle \frac {2}{5} t \sqrt {t^3+4}-\frac {8}{5} \int \frac {1}{\sqrt {t^3+4}}dt\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2}{5} t \sqrt {t^3+4}-\frac {8\ 2^{2/3} \sqrt {2+\sqrt {3}} \left (t+2^{2/3}\right ) \sqrt {\frac {t^2-2^{2/3} t+2 \sqrt [3]{2}}{\left (t+2^{2/3} \left (1+\sqrt {3}\right )\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {t+2^{2/3} \left (1-\sqrt {3}\right )}{t+2^{2/3} \left (1+\sqrt {3}\right )}\right ),-7-4 \sqrt {3}\right )}{5 \sqrt [4]{3} \sqrt {\frac {t+2^{2/3}}{\left (t+2^{2/3} \left (1+\sqrt {3}\right )\right )^2}} \sqrt {t^3+4}}\)

Input:

Int[t^3/Sqrt[4 + t^3],t]
 

Output:

(2*t*Sqrt[4 + t^3])/5 - (8*2^(2/3)*Sqrt[2 + Sqrt[3]]*(2^(2/3) + t)*Sqrt[(2 
*2^(1/3) - 2^(2/3)*t + t^2)/(2^(2/3)*(1 + Sqrt[3]) + t)^2]*EllipticF[ArcSi 
n[(2^(2/3)*(1 - Sqrt[3]) + t)/(2^(2/3)*(1 + Sqrt[3]) + t)], -7 - 4*Sqrt[3] 
])/(5*3^(1/4)*Sqrt[(2^(2/3) + t)/(2^(2/3)*(1 + Sqrt[3]) + t)^2]*Sqrt[4 + t 
^3])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.10

method result size
meijerg \(\frac {t^{4} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {4}{3}\right ], \left [\frac {7}{3}\right ], -\frac {t^{3}}{4}\right )}{8}\) \(17\)
default \(\frac {2 t \sqrt {t^{3}+4}}{5}+\frac {8 i \sqrt {3}\, 2^{\frac {2}{3}} \sqrt {i \left (t -\frac {2^{\frac {2}{3}}}{2}-\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}\, \sqrt {\frac {2^{\frac {2}{3}}+t}{\frac {3 \,2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}}}\, \sqrt {-i \left (t -\frac {2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {6}\, \sqrt {i \left (t -\frac {2^{\frac {2}{3}}}{2}-\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}}{6}, \sqrt {\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{\frac {3 \,2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}}}\right )}{15 \sqrt {t^{3}+4}}\) \(168\)
risch \(\frac {2 t \sqrt {t^{3}+4}}{5}+\frac {8 i \sqrt {3}\, 2^{\frac {2}{3}} \sqrt {i \left (t -\frac {2^{\frac {2}{3}}}{2}-\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}\, \sqrt {\frac {2^{\frac {2}{3}}+t}{\frac {3 \,2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}}}\, \sqrt {-i \left (t -\frac {2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {6}\, \sqrt {i \left (t -\frac {2^{\frac {2}{3}}}{2}-\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}}{6}, \sqrt {\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{\frac {3 \,2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}}}\right )}{15 \sqrt {t^{3}+4}}\) \(168\)
elliptic \(\frac {2 t \sqrt {t^{3}+4}}{5}+\frac {8 i \sqrt {3}\, 2^{\frac {2}{3}} \sqrt {i \left (t -\frac {2^{\frac {2}{3}}}{2}-\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}\, \sqrt {\frac {2^{\frac {2}{3}}+t}{\frac {3 \,2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}}}\, \sqrt {-i \left (t -\frac {2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {6}\, \sqrt {i \left (t -\frac {2^{\frac {2}{3}}}{2}-\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}\right ) \sqrt {3}\, 2^{\frac {1}{3}}}}{6}, \sqrt {\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{\frac {3 \,2^{\frac {2}{3}}}{2}+\frac {i \sqrt {3}\, 2^{\frac {2}{3}}}{2}}}\right )}{15 \sqrt {t^{3}+4}}\) \(168\)

Input:

int(t^3/(t^3+4)^(1/2),t,method=_RETURNVERBOSE)
 

Output:

1/8*t^4*hypergeom([1/2,4/3],[7/3],-1/4*t^3)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 17, normalized size of antiderivative = 0.10 \[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\frac {2}{5} \, \sqrt {t^{3} + 4} t - \frac {16}{5} \, {\rm weierstrassPInverse}\left (0, -16, t\right ) \] Input:

integrate(t^3/(t^3+4)^(1/2),t, algorithm="fricas")
 

Output:

2/5*sqrt(t^3 + 4)*t - 16/5*weierstrassPInverse(0, -16, t)
 

Sympy [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 31, normalized size of antiderivative = 0.18 \[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\frac {t^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {4}{3} \\ \frac {7}{3} \end {matrix}\middle | {\frac {t^{3} e^{i \pi }}{4}} \right )}}{6 \Gamma \left (\frac {7}{3}\right )} \] Input:

integrate(t**3/(t**3+4)**(1/2),t)
 

Output:

t**4*gamma(4/3)*hyper((1/2, 4/3), (7/3,), t**3*exp_polar(I*pi)/4)/(6*gamma 
(7/3))
 

Maxima [F]

\[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\int { \frac {t^{3}}{\sqrt {t^{3} + 4}} \,d t } \] Input:

integrate(t^3/(t^3+4)^(1/2),t, algorithm="maxima")
 

Output:

integrate(t^3/sqrt(t^3 + 4), t)
 

Giac [F]

\[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\int { \frac {t^{3}}{\sqrt {t^{3} + 4}} \,d t } \] Input:

integrate(t^3/(t^3+4)^(1/2),t, algorithm="giac")
 

Output:

integrate(t^3/sqrt(t^3 + 4), t)
 

Mupad [B] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.75 \[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\frac {2\,t\,\sqrt {t^3+4}}{5}-\frac {16\,\sqrt {-\frac {t-2^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{2^{2/3}+2^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}\,\sqrt {-\frac {t+2^{2/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{2^{2/3}-2^{2/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}\,\sqrt {\frac {t+2^{2/3}}{2^{2/3}+2^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}\,\left (2^{2/3}+2^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {t+2^{2/3}}{2^{2/3}+2^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}\right )\middle |\frac {2^{2/3}+2^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{2^{2/3}-2^{2/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}\right )}{5\,\sqrt {t^3+\left (2^{2/3}+2^{2/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-2^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\right )\,t^2+\left (2\,2^{1/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-2\,2^{1/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-2\,2^{1/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\right )\,t-4\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int(t^3/(t^3 + 4)^(1/2),t)
 

Output:

(2*t*(t^3 + 4)^(1/2))/5 - (16*(-(t - 2^(2/3)*((3^(1/2)*1i)/2 + 1/2))/(2^(2 
/3) + 2^(2/3)*((3^(1/2)*1i)/2 + 1/2)))^(1/2)*(-(t + 2^(2/3)*((3^(1/2)*1i)/ 
2 - 1/2))/(2^(2/3) - 2^(2/3)*((3^(1/2)*1i)/2 - 1/2)))^(1/2)*((t + 2^(2/3)) 
/(2^(2/3) + 2^(2/3)*((3^(1/2)*1i)/2 + 1/2)))^(1/2)*(2^(2/3) + 2^(2/3)*((3^ 
(1/2)*1i)/2 + 1/2))*ellipticF(asin(((t + 2^(2/3))/(2^(2/3) + 2^(2/3)*((3^( 
1/2)*1i)/2 + 1/2)))^(1/2)), (2^(2/3) + 2^(2/3)*((3^(1/2)*1i)/2 + 1/2))/(2^ 
(2/3) - 2^(2/3)*((3^(1/2)*1i)/2 - 1/2))))/(5*(t^2*(2^(2/3) + 2^(2/3)*((3^( 
1/2)*1i)/2 - 1/2) - 2^(2/3)*((3^(1/2)*1i)/2 + 1/2)) - 4*((3^(1/2)*1i)/2 - 
1/2)*((3^(1/2)*1i)/2 + 1/2) + t^3 - t*(2*2^(1/3)*((3^(1/2)*1i)/2 + 1/2) - 
2*2^(1/3)*((3^(1/2)*1i)/2 - 1/2) + 2*2^(1/3)*((3^(1/2)*1i)/2 - 1/2)*((3^(1 
/2)*1i)/2 + 1/2)))^(1/2))
 

Reduce [F]

\[ \int \frac {t^3}{\sqrt {4+t^3}} \, dt=\frac {2 \sqrt {t^{3}+4}\, t}{5}-\frac {8 \left (\int \frac {\sqrt {t^{3}+4}}{t^{3}+4}d t \right )}{5} \] Input:

int(t^3/(t^3+4)^(1/2),t)
 

Output:

(2*(sqrt(t**3 + 4)*t - 4*int(sqrt(t**3 + 4)/(t**3 + 4),t)))/5