\(\int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx\) [41]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 42 \[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=-4 \text {arctanh}\left (\frac {\cos (x)}{\sqrt {1+\sin (x)}}\right )+\frac {4 \cos (x)}{\sqrt {1+\sin (x)}}-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {1+\sin (x)}} \] Output:

-4*arctanh(cos(x)/(1+sin(x))^(1/2))+4*cos(x)/(1+sin(x))^(1/2)-2*cos(x)*ln( 
sin(x))/(1+sin(x))^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(87\) vs. \(2(42)=84\).

Time = 0.07 (sec) , antiderivative size = 87, normalized size of antiderivative = 2.07 \[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=\frac {2 \left (-\log \left (1+\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+\log \left (1-\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )-\cos \left (\frac {x}{2}\right ) (-2+\log (\sin (x)))+(-2+\log (\sin (x))) \sin \left (\frac {x}{2}\right )\right ) \sqrt {1+\sin (x)}}{\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )} \] Input:

Integrate[Log[Sin[x]]*Sqrt[1 + Sin[x]],x]
 

Output:

(2*(-Log[1 + Cos[x/2] - Sin[x/2]] + Log[1 - Cos[x/2] + Sin[x/2]] - Cos[x/2 
]*(-2 + Log[Sin[x]]) + (-2 + Log[Sin[x]])*Sin[x/2])*Sqrt[1 + Sin[x]])/(Cos 
[x/2] + Sin[x/2])
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 45, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {3034, 27, 3042, 3353, 3042, 3460, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sin (x)+1} \log (\sin (x)) \, dx\)

\(\Big \downarrow \) 3034

\(\displaystyle -\int -\frac {2 \cos (x) \cot (x)}{\sqrt {\sin (x)+1}}dx-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {\cos (x) \cot (x)}{\sqrt {\sin (x)+1}}dx-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 \int \frac {\cos (x)^2}{\sin (x) \sqrt {\sin (x)+1}}dx-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 3353

\(\displaystyle 2 \int \csc (x) (1-\sin (x)) \sqrt {\sin (x)+1}dx-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 \int \frac {(1-\sin (x)) \sqrt {\sin (x)+1}}{\sin (x)}dx-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 3460

\(\displaystyle 2 \left (\int \csc (x) \sqrt {\sin (x)+1}dx+\frac {2 \cos (x)}{\sqrt {\sin (x)+1}}\right )-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 \left (\int \frac {\sqrt {\sin (x)+1}}{\sin (x)}dx+\frac {2 \cos (x)}{\sqrt {\sin (x)+1}}\right )-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 3252

\(\displaystyle 2 \left (\frac {2 \cos (x)}{\sqrt {\sin (x)+1}}-2 \int \frac {1}{1-\frac {\cos ^2(x)}{\sin (x)+1}}d\frac {\cos (x)}{\sqrt {\sin (x)+1}}\right )-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

\(\Big \downarrow \) 219

\(\displaystyle 2 \left (\frac {2 \cos (x)}{\sqrt {\sin (x)+1}}-2 \text {arctanh}\left (\frac {\cos (x)}{\sqrt {\sin (x)+1}}\right )\right )-\frac {2 \cos (x) \log (\sin (x))}{\sqrt {\sin (x)+1}}\)

Input:

Int[Log[Sin[x]]*Sqrt[1 + Sin[x]],x]
 

Output:

(-2*Cos[x]*Log[Sin[x]])/Sqrt[1 + Sin[x]] + 2*(-2*ArcTanh[Cos[x]/Sqrt[1 + S 
in[x]]] + (2*Cos[x])/Sqrt[1 + Sin[x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3034
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[Log[u]   w, x 
] - Int[SimplifyIntegrand[w*(D[u, x]/u), x], x] /; InverseFunctionFreeQ[w, 
x]] /; InverseFunctionFreeQ[u, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3353
Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[1/b^2   Int[(d*Sin[e 
 + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /; Fre 
eQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] ||  !IGtQ[ 
n, 0])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
Maple [F]

\[\int \ln \left (\sin \left (x \right )\right ) \sqrt {\sin \left (x \right )+1}d x\]

Input:

int(ln(sin(x))*(sin(x)+1)^(1/2),x)
 

Output:

int(ln(sin(x))*(sin(x)+1)^(1/2),x)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 146 vs. \(2 (36) = 72\).

Time = 0.10 (sec) , antiderivative size = 146, normalized size of antiderivative = 3.48 \[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=-\frac {{\left (\cos \left (x\right ) + \sin \left (x\right ) + 1\right )} \log \left (\frac {\cos \left (x\right )^{2} - {\left (\cos \left (x\right ) - 1\right )} \sin \left (x\right ) + 2 \, {\left (\cos \left (x\right ) - \sin \left (x\right ) + 1\right )} \sqrt {\sin \left (x\right ) + 1} + 2 \, \cos \left (x\right ) + 1}{2 \, {\left (\cos \left (x\right ) + \sin \left (x\right ) + 1\right )}}\right ) - {\left (\cos \left (x\right ) + \sin \left (x\right ) + 1\right )} \log \left (\frac {\cos \left (x\right )^{2} - {\left (\cos \left (x\right ) - 1\right )} \sin \left (x\right ) - 2 \, {\left (\cos \left (x\right ) - \sin \left (x\right ) + 1\right )} \sqrt {\sin \left (x\right ) + 1} + 2 \, \cos \left (x\right ) + 1}{2 \, {\left (\cos \left (x\right ) + \sin \left (x\right ) + 1\right )}}\right ) + 2 \, {\left ({\left (\cos \left (x\right ) - \sin \left (x\right ) + 1\right )} \log \left (\sin \left (x\right )\right ) - 2 \, \cos \left (x\right ) + 2 \, \sin \left (x\right ) - 2\right )} \sqrt {\sin \left (x\right ) + 1}}{\cos \left (x\right ) + \sin \left (x\right ) + 1} \] Input:

integrate(log(sin(x))*(1+sin(x))^(1/2),x, algorithm="fricas")
 

Output:

-((cos(x) + sin(x) + 1)*log(1/2*(cos(x)^2 - (cos(x) - 1)*sin(x) + 2*(cos(x 
) - sin(x) + 1)*sqrt(sin(x) + 1) + 2*cos(x) + 1)/(cos(x) + sin(x) + 1)) - 
(cos(x) + sin(x) + 1)*log(1/2*(cos(x)^2 - (cos(x) - 1)*sin(x) - 2*(cos(x) 
- sin(x) + 1)*sqrt(sin(x) + 1) + 2*cos(x) + 1)/(cos(x) + sin(x) + 1)) + 2* 
((cos(x) - sin(x) + 1)*log(sin(x)) - 2*cos(x) + 2*sin(x) - 2)*sqrt(sin(x) 
+ 1))/(cos(x) + sin(x) + 1)
 

Sympy [F]

\[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=\int \sqrt {\sin {\left (x \right )} + 1} \log {\left (\sin {\left (x \right )} \right )}\, dx \] Input:

integrate(ln(sin(x))*(1+sin(x))**(1/2),x)
 

Output:

Integral(sqrt(sin(x) + 1)*log(sin(x)), x)
 

Maxima [F]

\[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=\int { \sqrt {\sin \left (x\right ) + 1} \log \left (\sin \left (x\right )\right ) \,d x } \] Input:

integrate(log(sin(x))*(1+sin(x))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(sin(x) + 1)*log(sin(x)), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 90 vs. \(2 (36) = 72\).

Time = 0.14 (sec) , antiderivative size = 90, normalized size of antiderivative = 2.14 \[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=\sqrt {2} {\left (2 \, \log \left (\sin \left (x\right )\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, x\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, x\right ) + {\left (\sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{4} \, \pi - \frac {1}{2} \, x\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{4} \, \pi - \frac {1}{2} \, x\right ) \right |}}\right ) + 4 \, \sin \left (\frac {1}{4} \, \pi - \frac {1}{2} \, x\right )\right )} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, x\right )\right )\right )} \] Input:

integrate(log(sin(x))*(1+sin(x))^(1/2),x, algorithm="giac")
 

Output:

sqrt(2)*(2*log(sin(x))*sgn(cos(-1/4*pi + 1/2*x))*sin(-1/4*pi + 1/2*x) + (s 
qrt(2)*log(abs(-2*sqrt(2) + 4*sin(1/4*pi - 1/2*x))/abs(2*sqrt(2) + 4*sin(1 
/4*pi - 1/2*x))) + 4*sin(1/4*pi - 1/2*x))*sgn(cos(-1/4*pi + 1/2*x)))
 

Mupad [F(-1)]

Timed out. \[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=\int \ln \left (\sin \left (x\right )\right )\,\sqrt {\sin \left (x\right )+1} \,d x \] Input:

int(log(sin(x))*(sin(x) + 1)^(1/2),x)
 

Output:

int(log(sin(x))*(sin(x) + 1)^(1/2), x)
 

Reduce [F]

\[ \int \log (\sin (x)) \sqrt {1+\sin (x)} \, dx=\int \sqrt {\sin \left (x \right )+1}\, \mathrm {log}\left (\sin \left (x \right )\right )d x \] Input:

int(log(sin(x))*(1+sin(x))^(1/2),x)
 

Output:

int(sqrt(sin(x) + 1)*log(sin(x)),x)