\(\int \arctan (x \sqrt {1+x^2}) \, dx\) [47]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 120 \[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx=x \arctan \left (x \sqrt {1+x^2}\right )+\frac {1}{2} \arctan \left (\sqrt {3}-2 \sqrt {1+x^2}\right )-\frac {1}{2} \arctan \left (\sqrt {3}+2 \sqrt {1+x^2}\right )-\frac {1}{4} \sqrt {3} \log \left (2+x^2-\sqrt {3} \sqrt {1+x^2}\right )+\frac {1}{4} \sqrt {3} \log \left (2+x^2+\sqrt {3} \sqrt {1+x^2}\right ) \] Output:

-1/2*arctan(-3^(1/2)+2*(x^2+1)^(1/2))+x*arctan(x*(x^2+1)^(1/2))-1/2*arctan 
(3^(1/2)+2*(x^2+1)^(1/2))-1/4*ln(2+x^2-3^(1/2)*(x^2+1)^(1/2))*3^(1/2)+1/4* 
ln(2+x^2+3^(1/2)*(x^2+1)^(1/2))*3^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.79 \[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx=-\frac {1}{2} \left (1-i \sqrt {3}\right ) \arctan \left (\frac {1}{2} \left (1-i \sqrt {3}\right ) \sqrt {1+x^2}\right )-\frac {1}{2} \left (1+i \sqrt {3}\right ) \arctan \left (\frac {1}{2} \left (1+i \sqrt {3}\right ) \sqrt {1+x^2}\right )+x \arctan \left (x \sqrt {1+x^2}\right ) \] Input:

Integrate[ArcTan[x*Sqrt[1 + x^2]],x]
 

Output:

-1/2*((1 - I*Sqrt[3])*ArcTan[((1 - I*Sqrt[3])*Sqrt[1 + x^2])/2]) - ((1 + I 
*Sqrt[3])*ArcTan[((1 + I*Sqrt[3])*Sqrt[1 + x^2])/2])/2 + x*ArcTan[x*Sqrt[1 
 + x^2]]
 

Rubi [A] (warning: unable to verify)

Time = 0.39 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.08, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.917, Rules used = {5726, 2238, 1197, 25, 1483, 27, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \arctan \left (x \sqrt {x^2+1}\right ) \, dx\)

\(\Big \downarrow \) 5726

\(\displaystyle x \arctan \left (x \sqrt {x^2+1}\right )-\int \frac {x \left (2 x^2+1\right )}{\sqrt {x^2+1} \left (x^4+x^2+1\right )}dx\)

\(\Big \downarrow \) 2238

\(\displaystyle x \arctan \left (x \sqrt {x^2+1}\right )-\frac {1}{2} \int \frac {2 x^2+1}{\sqrt {x^2+1} \left (x^4+x^2+1\right )}dx^2\)

\(\Big \downarrow \) 1197

\(\displaystyle x \arctan \left (x \sqrt {x^2+1}\right )-\int -\frac {1-2 x^4}{x^8-x^4+1}d\sqrt {x^2+1}\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {1-2 x^4}{x^8-x^4+1}d\sqrt {x^2+1}+x \arctan \left (x \sqrt {x^2+1}\right )\)

\(\Big \downarrow \) 1483

\(\displaystyle \frac {\int \frac {\sqrt {3}-3 \sqrt {x^2+1}}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}}{2 \sqrt {3}}+\frac {\int \frac {\sqrt {3} \left (\sqrt {3} \sqrt {x^2+1}+1\right )}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}}{2 \sqrt {3}}+x \arctan \left (x \sqrt {x^2+1}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {3}-3 \sqrt {x^2+1}}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}}{2 \sqrt {3}}+\frac {1}{2} \int \frac {\sqrt {3} \sqrt {x^2+1}+1}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}+x \arctan \left (x \sqrt {x^2+1}\right )\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {-\frac {1}{2} \sqrt {3} \int \frac {1}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}-\frac {3}{2} \int -\frac {\sqrt {3}-2 \sqrt {x^2+1}}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}}{2 \sqrt {3}}+\frac {1}{2} \left (\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt {x^2+1}+\sqrt {3}}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}-\frac {1}{2} \int \frac {1}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}\right )+x \arctan \left (x \sqrt {x^2+1}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {3}{2} \int \frac {\sqrt {3}-2 \sqrt {x^2+1}}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}-\frac {1}{2} \sqrt {3} \int \frac {1}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}}{2 \sqrt {3}}+\frac {1}{2} \left (\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt {x^2+1}+\sqrt {3}}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}-\frac {1}{2} \int \frac {1}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}\right )+x \arctan \left (x \sqrt {x^2+1}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\sqrt {3} \int \frac {1}{-x^4-1}d\left (2 \sqrt {x^2+1}-\sqrt {3}\right )+\frac {3}{2} \int \frac {\sqrt {3}-2 \sqrt {x^2+1}}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}}{2 \sqrt {3}}+\frac {1}{2} \left (\int \frac {1}{-x^4-1}d\left (2 \sqrt {x^2+1}+\sqrt {3}\right )+\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt {x^2+1}+\sqrt {3}}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}\right )+x \arctan \left (x \sqrt {x^2+1}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {3}{2} \int \frac {\sqrt {3}-2 \sqrt {x^2+1}}{x^4-\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}+\sqrt {3} \arctan \left (\sqrt {3}-2 \sqrt {x^2+1}\right )}{2 \sqrt {3}}+\frac {1}{2} \left (\frac {1}{2} \sqrt {3} \int \frac {2 \sqrt {x^2+1}+\sqrt {3}}{x^4+\sqrt {3} \sqrt {x^2+1}+1}d\sqrt {x^2+1}-\arctan \left (2 \sqrt {x^2+1}+\sqrt {3}\right )\right )+x \arctan \left (x \sqrt {x^2+1}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle x \arctan \left (x \sqrt {x^2+1}\right )+\frac {\sqrt {3} \arctan \left (\sqrt {3}-2 \sqrt {x^2+1}\right )-\frac {3}{2} \log \left (x^4-\sqrt {3} \sqrt {x^2+1}+1\right )}{2 \sqrt {3}}+\frac {1}{2} \left (\frac {1}{2} \sqrt {3} \log \left (x^4+\sqrt {3} \sqrt {x^2+1}+1\right )-\arctan \left (2 \sqrt {x^2+1}+\sqrt {3}\right )\right )\)

Input:

Int[ArcTan[x*Sqrt[1 + x^2]],x]
 

Output:

x*ArcTan[x*Sqrt[1 + x^2]] + (Sqrt[3]*ArcTan[Sqrt[3] - 2*Sqrt[1 + x^2]] - ( 
3*Log[1 + x^4 - Sqrt[3]*Sqrt[1 + x^2]])/2)/(2*Sqrt[3]) + (-ArcTan[Sqrt[3] 
+ 2*Sqrt[1 + x^2]] + (Sqrt[3]*Log[1 + x^4 + Sqrt[3]*Sqrt[1 + x^2]])/2)/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1197
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)), x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - 
b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; Fr 
eeQ[{a, b, c, d, e, f, g}, x]
 

rule 1483
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   In 
t[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(d*r 
 + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
 

rule 2238
Int[(Px_)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[(Px /. x -> Sqrt[x])*(d + e*x 
)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] 
 && PolyQ[Px, x^2]
 

rule 5726
Int[ArcTan[u_], x_Symbol] :> Simp[x*ArcTan[u], x] - Int[SimplifyIntegrand[x 
*(D[u, x]/(1 + u^2)), x], x] /; InverseFunctionFreeQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(508\) vs. \(2(92)=184\).

Time = 0.21 (sec) , antiderivative size = 509, normalized size of antiderivative = 4.24

method result size
default \(x \arctan \left (x \sqrt {x^{2}+1}\right )+\frac {\sqrt {2}\, \sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )}{3 \sqrt {\frac {\frac {\left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+1}{\left (\frac {-1+x}{-1-x}+1\right )^{2}}}\, \left (\frac {-1+x}{-1-x}+1\right )}+\frac {\sqrt {2}\, \sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )}{3 \sqrt {\frac {\frac {\left (1+x \right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {1+x}{1-x}+1\right )^{2}}}\, \left (\frac {1+x}{1-x}+1\right )}-\frac {\sqrt {2}\, \sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \left (\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )-3 \arctan \left (\frac {\sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \left (-1+x \right )}{\left (\frac {\left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+1\right ) \left (-1-x \right )}\right )\right )}{12 \sqrt {\frac {\frac {\left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+1}{\left (\frac {-1+x}{-1-x}+1\right )^{2}}}\, \left (\frac {-1+x}{-1-x}+1\right )}+\frac {\sqrt {2}\, \sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (-\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )+3 \arctan \left (\frac {\sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (1+x \right )}{\left (\frac {\left (1+x \right )^{2}}{\left (1-x \right )^{2}}+1\right ) \left (1-x \right )}\right )\right )}{12 \sqrt {\frac {\frac {\left (1+x \right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {1+x}{1-x}+1\right )^{2}}}\, \left (\frac {1+x}{1-x}+1\right )}\) \(509\)
parts \(x \arctan \left (x \sqrt {x^{2}+1}\right )+\frac {\sqrt {2}\, \sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )}{3 \sqrt {\frac {\frac {\left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+1}{\left (\frac {-1+x}{-1-x}+1\right )^{2}}}\, \left (\frac {-1+x}{-1-x}+1\right )}+\frac {\sqrt {2}\, \sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )}{3 \sqrt {\frac {\frac {\left (1+x \right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {1+x}{1-x}+1\right )^{2}}}\, \left (\frac {1+x}{1-x}+1\right )}-\frac {\sqrt {2}\, \sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \left (\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )-3 \arctan \left (\frac {\sqrt {\frac {2 \left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+2}\, \left (-1+x \right )}{\left (\frac {\left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+1\right ) \left (-1-x \right )}\right )\right )}{12 \sqrt {\frac {\frac {\left (-1+x \right )^{2}}{\left (-1-x \right )^{2}}+1}{\left (\frac {-1+x}{-1-x}+1\right )^{2}}}\, \left (\frac {-1+x}{-1-x}+1\right )}+\frac {\sqrt {2}\, \sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (-\sqrt {3}\, \operatorname {arctanh}\left (\frac {\sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \sqrt {3}}{2}\right )+3 \arctan \left (\frac {\sqrt {\frac {2 \left (1+x \right )^{2}}{\left (1-x \right )^{2}}+2}\, \left (1+x \right )}{\left (\frac {\left (1+x \right )^{2}}{\left (1-x \right )^{2}}+1\right ) \left (1-x \right )}\right )\right )}{12 \sqrt {\frac {\frac {\left (1+x \right )^{2}}{\left (1-x \right )^{2}}+1}{\left (\frac {1+x}{1-x}+1\right )^{2}}}\, \left (\frac {1+x}{1-x}+1\right )}\) \(509\)

Input:

int(arctan(x*(x^2+1)^(1/2)),x,method=_RETURNVERBOSE)
 

Output:

x*arctan(x*(x^2+1)^(1/2))+1/3*2^(1/2)/(((-1+x)^2/(-1-x)^2+1)/((-1+x)/(-1-x 
)+1)^2)^(1/2)/((-1+x)/(-1-x)+1)*(2*(-1+x)^2/(-1-x)^2+2)^(1/2)*3^(1/2)*arct 
anh(1/2*(2*(-1+x)^2/(-1-x)^2+2)^(1/2)*3^(1/2))+1/3*2^(1/2)/(((1+x)^2/(1-x) 
^2+1)/((1+x)/(1-x)+1)^2)^(1/2)/((1+x)/(1-x)+1)*(2*(1+x)^2/(1-x)^2+2)^(1/2) 
*3^(1/2)*arctanh(1/2*(2*(1+x)^2/(1-x)^2+2)^(1/2)*3^(1/2))-1/12*2^(1/2)*(2* 
(-1+x)^2/(-1-x)^2+2)^(1/2)*(3^(1/2)*arctanh(1/2*(2*(-1+x)^2/(-1-x)^2+2)^(1 
/2)*3^(1/2))-3*arctan(1/((-1+x)^2/(-1-x)^2+1)*(2*(-1+x)^2/(-1-x)^2+2)^(1/2 
)*(-1+x)/(-1-x)))/(((-1+x)^2/(-1-x)^2+1)/((-1+x)/(-1-x)+1)^2)^(1/2)/((-1+x 
)/(-1-x)+1)+1/12*2^(1/2)*(2*(1+x)^2/(1-x)^2+2)^(1/2)*(-3^(1/2)*arctanh(1/2 
*(2*(1+x)^2/(1-x)^2+2)^(1/2)*3^(1/2))+3*arctan(1/((1+x)^2/(1-x)^2+1)*(2*(1 
+x)^2/(1-x)^2+2)^(1/2)*(1+x)/(1-x)))/(((1+x)^2/(1-x)^2+1)/((1+x)/(1-x)+1)^ 
2)^(1/2)/((1+x)/(1-x)+1)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.35 \[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx=x \arctan \left (\sqrt {x^{2} + 1} x\right ) - \frac {1}{4} \, \sqrt {3} \log \left (2 \, x^{4} + 5 \, x^{2} + 2 \, \sqrt {3} {\left (x^{3} + x\right )} - {\left (2 \, x^{3} + \sqrt {3} {\left (2 \, x^{2} + 1\right )} + 4 \, x\right )} \sqrt {x^{2} + 1} + 2\right ) + \frac {1}{4} \, \sqrt {3} \log \left (2 \, x^{4} + 5 \, x^{2} - 2 \, \sqrt {3} {\left (x^{3} + x\right )} - {\left (2 \, x^{3} - \sqrt {3} {\left (2 \, x^{2} + 1\right )} + 4 \, x\right )} \sqrt {x^{2} + 1} + 2\right ) - \frac {1}{2} \, \arctan \left (\sqrt {3} + 2 \, \sqrt {x^{2} + 1}\right ) - \frac {1}{2} \, \arctan \left (-\sqrt {3} + 2 \, \sqrt {x^{2} + 1}\right ) \] Input:

integrate(arctan(x*(x^2+1)^(1/2)),x, algorithm="fricas")
 

Output:

x*arctan(sqrt(x^2 + 1)*x) - 1/4*sqrt(3)*log(2*x^4 + 5*x^2 + 2*sqrt(3)*(x^3 
 + x) - (2*x^3 + sqrt(3)*(2*x^2 + 1) + 4*x)*sqrt(x^2 + 1) + 2) + 1/4*sqrt( 
3)*log(2*x^4 + 5*x^2 - 2*sqrt(3)*(x^3 + x) - (2*x^3 - sqrt(3)*(2*x^2 + 1) 
+ 4*x)*sqrt(x^2 + 1) + 2) - 1/2*arctan(sqrt(3) + 2*sqrt(x^2 + 1)) - 1/2*ar 
ctan(-sqrt(3) + 2*sqrt(x^2 + 1))
 

Sympy [F]

\[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx=\int \operatorname {atan}{\left (x \sqrt {x^{2} + 1} \right )}\, dx \] Input:

integrate(atan(x*(x**2+1)**(1/2)),x)
 

Output:

Integral(atan(x*sqrt(x**2 + 1)), x)
 

Maxima [F]

\[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx=\int { \arctan \left (\sqrt {x^{2} + 1} x\right ) \,d x } \] Input:

integrate(arctan(x*(x^2+1)^(1/2)),x, algorithm="maxima")
 

Output:

x*arctan(sqrt(x^2 + 1)*x) - integrate((2*x^3 + x)*sqrt(x^2 + 1)/((x^4 + x^ 
2)*(x^2 + 1) + x^2 + 1), x)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.77 \[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx=x \arctan \left (\sqrt {x^{2} + 1} x\right ) + \frac {1}{4} \, \sqrt {3} \log \left (x^{2} + \sqrt {3} \sqrt {x^{2} + 1} + 2\right ) - \frac {1}{4} \, \sqrt {3} \log \left (x^{2} - \sqrt {3} \sqrt {x^{2} + 1} + 2\right ) - \frac {1}{2} \, \arctan \left (\sqrt {3} + 2 \, \sqrt {x^{2} + 1}\right ) - \frac {1}{2} \, \arctan \left (-\sqrt {3} + 2 \, \sqrt {x^{2} + 1}\right ) \] Input:

integrate(arctan(x*(x^2+1)^(1/2)),x, algorithm="giac")
 

Output:

x*arctan(sqrt(x^2 + 1)*x) + 1/4*sqrt(3)*log(x^2 + sqrt(3)*sqrt(x^2 + 1) + 
2) - 1/4*sqrt(3)*log(x^2 - sqrt(3)*sqrt(x^2 + 1) + 2) - 1/2*arctan(sqrt(3) 
 + 2*sqrt(x^2 + 1)) - 1/2*arctan(-sqrt(3) + 2*sqrt(x^2 + 1))
 

Mupad [B] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 413, normalized size of antiderivative = 3.44 \[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx =\text {Too large to display} \] Input:

int(atan(x*(x^2 + 1)^(1/2)),x)
 

Output:

x*atan(x*(x^2 + 1)^(1/2)) - ((log(x - (3^(1/2)*1i)/2 - 1/2) - log(x/2 + (3 
^(1/2)/2 + 1i/2)*(x^2 + 1)^(1/2) + (3^(1/2)*x*1i)/2 + 1))*((3^(1/2)*1i)/2 
+ 2*((3^(1/2)*1i)/2 + 1/2)^3 + 1/2))/((((3^(1/2)*1i)/2 + 1/2)^2 + 1)^(1/2) 
*(3^(1/2)*1i + 4*((3^(1/2)*1i)/2 + 1/2)^3 + 1)) - ((log(x - (3^(1/2)*1i)/2 
 + 1/2) - log((3^(1/2)/2 - 1i/2)*(x^2 + 1)^(1/2) - x/2 + (3^(1/2)*x*1i)/2 
+ 1))*((3^(1/2)*1i)/2 + 2*((3^(1/2)*1i)/2 - 1/2)^3 - 1/2))/((((3^(1/2)*1i) 
/2 - 1/2)^2 + 1)^(1/2)*(3^(1/2)*1i + 4*((3^(1/2)*1i)/2 - 1/2)^3 - 1)) - (( 
log(x + (3^(1/2)*1i)/2 - 1/2) - log(x/2 + (3^(1/2)/2 - 1i/2)*(x^2 + 1)^(1/ 
2) - (3^(1/2)*x*1i)/2 + 1))*((3^(1/2)*1i)/2 + 2*((3^(1/2)*1i)/2 - 1/2)^3 - 
 1/2))/((((3^(1/2)*1i)/2 - 1/2)^2 + 1)^(1/2)*(3^(1/2)*1i + 4*((3^(1/2)*1i) 
/2 - 1/2)^3 - 1)) - ((log(x + (3^(1/2)*1i)/2 + 1/2) - log((3^(1/2)/2 + 1i/ 
2)*(x^2 + 1)^(1/2) - x/2 - (3^(1/2)*x*1i)/2 + 1))*((3^(1/2)*1i)/2 + 2*((3^ 
(1/2)*1i)/2 + 1/2)^3 + 1/2))/((((3^(1/2)*1i)/2 + 1/2)^2 + 1)^(1/2)*(3^(1/2 
)*1i + 4*((3^(1/2)*1i)/2 + 1/2)^3 + 1))
 

Reduce [F]

\[ \int \arctan \left (x \sqrt {1+x^2}\right ) \, dx=\int \mathit {atan} \left (\sqrt {x^{2}+1}\, x \right )d x \] Input:

int(atan(x*(x^2+1)^(1/2)),x)
 

Output:

int(atan(sqrt(x**2 + 1)*x),x)