\(\int \frac {\sqrt [3]{x}}{a+b x} \, dx\) [320]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 109 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=\frac {3 \sqrt [3]{x}}{b}+\frac {\sqrt {3} \sqrt [3]{a} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{b^{4/3}}-\frac {3 \sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 b^{4/3}}+\frac {\sqrt [3]{a} \log (a+b x)}{2 b^{4/3}} \] Output:

3*x^(1/3)/b+3^(1/2)*a^(1/3)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x^(1/3))*3^(1/2) 
/a^(1/3))/b^(4/3)-3/2*a^(1/3)*ln(a^(1/3)+b^(1/3)*x^(1/3))/b^(4/3)+1/2*a^(1 
/3)*ln(b*x+a)/b^(4/3)
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.16 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=\frac {6 \sqrt [3]{b} \sqrt [3]{x}+2 \sqrt {3} \sqrt [3]{a} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )-2 \sqrt [3]{a} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )+\sqrt [3]{a} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{2 b^{4/3}} \] Input:

Integrate[x^(1/3)/(a + b*x),x]
 

Output:

(6*b^(1/3)*x^(1/3) + 2*Sqrt[3]*a^(1/3)*ArcTan[(1 - (2*b^(1/3)*x^(1/3))/a^( 
1/3))/Sqrt[3]] - 2*a^(1/3)*Log[a^(1/3) + b^(1/3)*x^(1/3)] + a^(1/3)*Log[a^ 
(2/3) - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x^(2/3)])/(2*b^(4/3))
 

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {60, 70, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{x}}{a+b x} \, dx\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {3 \sqrt [3]{x}}{b}-\frac {a \int \frac {1}{x^{2/3} (a+b x)}dx}{b}\)

\(\Big \downarrow \) 70

\(\displaystyle \frac {3 \sqrt [3]{x}}{b}-\frac {a \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+\sqrt [3]{x}}d\sqrt [3]{x}}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {3 \sqrt [3]{x}}{b}-\frac {a \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \sqrt [3]{x}}{b}-\frac {a \left (\frac {3 \int \frac {1}{-x^{2/3}-3}d\left (1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{a^{2/3} \sqrt [3]{b}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \sqrt [3]{x}}{b}-\frac {a \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{a^{2/3} \sqrt [3]{b}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{b}\)

Input:

Int[x^(1/3)/(a + b*x),x]
 

Output:

(3*x^(1/3))/b - (a*(-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sq 
rt[3]])/(a^(2/3)*b^(1/3))) + (3*Log[a^(1/3) + b^(1/3)*x^(1/3)])/(2*a^(2/3) 
*b^(1/3)) - Log[a + b*x]/(2*a^(2/3)*b^(1/3))))/b
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 70
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2) 
, x] + (Simp[3/(2*b*q)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] + Simp[3/(2*b*q^2)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
Maple [A] (verified)

Time = 0.14 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.03

method result size
derivativedivides \(\frac {3 x^{\frac {1}{3}}}{b}-\frac {3 \left (\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right ) a}{b}\) \(112\)
default \(\frac {3 x^{\frac {1}{3}}}{b}-\frac {3 \left (\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}\right ) a}{b}\) \(112\)

Input:

int(x^(1/3)/(b*x+a),x,method=_RETURNVERBOSE)
 

Output:

3*x^(1/3)/b-3*(1/3/b/(a/b)^(2/3)*ln(x^(1/3)+(a/b)^(1/3))-1/6/b/(a/b)^(2/3) 
*ln(x^(2/3)-(a/b)^(1/3)*x^(1/3)+(a/b)^(2/3))+1/3/b/(a/b)^(2/3)*3^(1/2)*arc 
tan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3)-1)))*a/b
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.05 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=\frac {2 \, \sqrt {3} \left (-\frac {a}{b}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} b x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {2}{3}} - \sqrt {3} a}{3 \, a}\right ) - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right ) + 2 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left (x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right ) + 6 \, x^{\frac {1}{3}}}{2 \, b} \] Input:

integrate(x^(1/3)/(b*x+a),x, algorithm="fricas")
 

Output:

1/2*(2*sqrt(3)*(-a/b)^(1/3)*arctan(1/3*(2*sqrt(3)*b*x^(1/3)*(-a/b)^(2/3) - 
 sqrt(3)*a)/a) - (-a/b)^(1/3)*log(x^(2/3) + x^(1/3)*(-a/b)^(1/3) + (-a/b)^ 
(2/3)) + 2*(-a/b)^(1/3)*log(x^(1/3) - (-a/b)^(1/3)) + 6*x^(1/3))/b
 

Sympy [A] (verification not implemented)

Time = 1.82 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.36 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=\begin {cases} \tilde {\infty } \sqrt [3]{x} & \text {for}\: a = 0 \wedge b = 0 \\\frac {3 x^{\frac {4}{3}}}{4 a} & \text {for}\: b = 0 \\\frac {3 \sqrt [3]{x}}{b} & \text {for}\: a = 0 \\\frac {3 \sqrt [3]{x}}{b} + \frac {\sqrt [3]{- \frac {a}{b}} \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{b} - \frac {\sqrt [3]{- \frac {a}{b}} \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{2 b} - \frac {\sqrt {3} \sqrt [3]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{b} & \text {otherwise} \end {cases} \] Input:

integrate(x**(1/3)/(b*x+a),x)
 

Output:

Piecewise((zoo*x**(1/3), Eq(a, 0) & Eq(b, 0)), (3*x**(4/3)/(4*a), Eq(b, 0) 
), (3*x**(1/3)/b, Eq(a, 0)), (3*x**(1/3)/b + (-a/b)**(1/3)*log(x**(1/3) - 
(-a/b)**(1/3))/b - (-a/b)**(1/3)*log(4*x**(2/3) + 4*x**(1/3)*(-a/b)**(1/3) 
 + 4*(-a/b)**(2/3))/(2*b) - sqrt(3)*(-a/b)**(1/3)*atan(2*sqrt(3)*x**(1/3)/ 
(3*(-a/b)**(1/3)) + sqrt(3)/3)/b, True))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=-\frac {\sqrt {3} a \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {3 \, x^{\frac {1}{3}}}{b} + \frac {a \log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 \, b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {a \log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \] Input:

integrate(x^(1/3)/(b*x+a),x, algorithm="maxima")
 

Output:

-sqrt(3)*a*arctan(1/3*sqrt(3)*(2*x^(1/3) - (a/b)^(1/3))/(a/b)^(1/3))/(b^2* 
(a/b)^(2/3)) + 3*x^(1/3)/b + 1/2*a*log(x^(2/3) - x^(1/3)*(a/b)^(1/3) + (a/ 
b)^(2/3))/(b^2*(a/b)^(2/3)) - a*log(x^(1/3) + (a/b)^(1/3))/(b^2*(a/b)^(2/3 
))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.09 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=\frac {\left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{b} - \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b^{2}} + \frac {3 \, x^{\frac {1}{3}}}{b} - \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{2 \, b^{2}} \] Input:

integrate(x^(1/3)/(b*x+a),x, algorithm="giac")
 

Output:

(-a/b)^(1/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/b - sqrt(3)*(-a*b^2)^(1/3)*a 
rctan(1/3*sqrt(3)*(2*x^(1/3) + (-a/b)^(1/3))/(-a/b)^(1/3))/b^2 + 3*x^(1/3) 
/b - 1/2*(-a*b^2)^(1/3)*log(x^(2/3) + x^(1/3)*(-a/b)^(1/3) + (-a/b)^(2/3)) 
/b^2
 

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.16 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=\frac {3\,x^{1/3}}{b}+\frac {{\left (-a\right )}^{1/3}\,\ln \left (9\,{\left (-a\right )}^{4/3}\,b^{2/3}+9\,a\,b\,x^{1/3}\right )}{b^{4/3}}+\frac {{\left (-a\right )}^{1/3}\,\ln \left (9\,{\left (-a\right )}^{4/3}\,b^{2/3}\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )+9\,a\,b\,x^{1/3}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{b^{4/3}}-\frac {{\left (-a\right )}^{1/3}\,\ln \left (9\,{\left (-a\right )}^{4/3}\,b^{2/3}\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-9\,a\,b\,x^{1/3}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{b^{4/3}} \] Input:

int(x^(1/3)/(a + b*x),x)
 

Output:

(3*x^(1/3))/b + ((-a)^(1/3)*log(9*(-a)^(4/3)*b^(2/3) + 9*a*b*x^(1/3)))/b^( 
4/3) + ((-a)^(1/3)*log(9*(-a)^(4/3)*b^(2/3)*((3^(1/2)*1i)/2 - 1/2) + 9*a*b 
*x^(1/3))*((3^(1/2)*1i)/2 - 1/2))/b^(4/3) - ((-a)^(1/3)*log(9*(-a)^(4/3)*b 
^(2/3)*((3^(1/2)*1i)/2 + 1/2) - 9*a*b*x^(1/3))*((3^(1/2)*1i)/2 + 1/2))/b^( 
4/3)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.79 \[ \int \frac {\sqrt [3]{x}}{a+b x} \, dx=\frac {2 a^{\frac {1}{3}} \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 x^{\frac {1}{3}} b^{\frac {1}{3}}}{a^{\frac {1}{3}} \sqrt {3}}\right )+a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {2}{3}}-x^{\frac {1}{3}} b^{\frac {1}{3}} a^{\frac {1}{3}}+x^{\frac {2}{3}} b^{\frac {2}{3}}\right )-2 a^{\frac {1}{3}} \mathrm {log}\left (a^{\frac {1}{3}}+x^{\frac {1}{3}} b^{\frac {1}{3}}\right )+6 x^{\frac {1}{3}} b^{\frac {1}{3}}}{2 b^{\frac {4}{3}}} \] Input:

int(x^(1/3)/(b*x+a),x)
 

Output:

(2*a**(1/3)*sqrt(3)*atan((a**(1/3) - 2*x**(1/3)*b**(1/3))/(a**(1/3)*sqrt(3 
))) + a**(1/3)*log(a**(2/3) - x**(1/3)*b**(1/3)*a**(1/3) + x**(2/3)*b**(2/ 
3)) - 2*a**(1/3)*log(a**(1/3) + x**(1/3)*b**(1/3)) + 6*x**(1/3)*b**(1/3))/ 
(2*b**(1/3)*b)