\(\int \frac {x^{5/3}}{(a+b x)^2} \, dx\) [325]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 129 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=\frac {3 x^{2/3}}{2 b^2}+\frac {a x^{2/3}}{b^2 (a+b x)}+\frac {5 a^{2/3} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} b^{8/3}}+\frac {5 a^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 b^{8/3}}-\frac {5 a^{2/3} \log (a+b x)}{6 b^{8/3}} \] Output:

3/2*x^(2/3)/b^2+a*x^(2/3)/b^2/(b*x+a)+5/3*a^(2/3)*arctan(1/3*(a^(1/3)-2*b^ 
(1/3)*x^(1/3))*3^(1/2)/a^(1/3))*3^(1/2)/b^(8/3)+5/2*a^(2/3)*ln(a^(1/3)+b^( 
1/3)*x^(1/3))/b^(8/3)-5/6*a^(2/3)*ln(b*x+a)/b^(8/3)
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.10 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=\frac {\frac {3 b^{2/3} x^{2/3} (5 a+3 b x)}{a+b x}+10 \sqrt {3} a^{2/3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )+10 a^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )-5 a^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{6 b^{8/3}} \] Input:

Integrate[x^(5/3)/(a + b*x)^2,x]
 

Output:

((3*b^(2/3)*x^(2/3)*(5*a + 3*b*x))/(a + b*x) + 10*Sqrt[3]*a^(2/3)*ArcTan[( 
1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]] + 10*a^(2/3)*Log[a^(1/3) + b^(1/ 
3)*x^(1/3)] - 5*a^(2/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x^ 
(2/3)])/(6*b^(8/3))
 

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.09, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {51, 60, 68, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{5/3}}{(a+b x)^2} \, dx\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {5 \int \frac {x^{2/3}}{a+b x}dx}{3 b}-\frac {x^{5/3}}{b (a+b x)}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {5 \left (\frac {3 x^{2/3}}{2 b}-\frac {a \int \frac {1}{\sqrt [3]{x} (a+b x)}dx}{b}\right )}{3 b}-\frac {x^{5/3}}{b (a+b x)}\)

\(\Big \downarrow \) 68

\(\displaystyle \frac {5 \left (\frac {3 x^{2/3}}{2 b}-\frac {a \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 b}-\frac {3 \int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+\sqrt [3]{x}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{b}\right )}{3 b}-\frac {x^{5/3}}{b (a+b x)}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {5 \left (\frac {3 x^{2/3}}{2 b}-\frac {a \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 b}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{b}\right )}{3 b}-\frac {x^{5/3}}{b (a+b x)}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {5 \left (\frac {3 x^{2/3}}{2 b}-\frac {a \left (\frac {3 \int \frac {1}{-x^{2/3}-3}d\left (1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{b}\right )}{3 b}-\frac {x^{5/3}}{b (a+b x)}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {5 \left (\frac {3 x^{2/3}}{2 b}-\frac {a \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{b}\right )}{3 b}-\frac {x^{5/3}}{b (a+b x)}\)

Input:

Int[x^(5/3)/(a + b*x)^2,x]
 

Output:

-(x^(5/3)/(b*(a + b*x))) + (5*((3*x^(2/3))/(2*b) - (a*(-((Sqrt[3]*ArcTan[( 
1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]])/(a^(1/3)*b^(2/3))) - (3*Log[a^( 
1/3) + b^(1/3)*x^(1/3)])/(2*a^(1/3)*b^(2/3)) + Log[a + b*x]/(2*a^(1/3)*b^( 
2/3))))/b))/(3*b)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 68
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.96

method result size
derivativedivides \(\frac {3 x^{\frac {2}{3}}}{2 b^{2}}-\frac {3 a \left (-\frac {x^{\frac {2}{3}}}{3 \left (b x +a \right )}-\frac {5 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {5 \ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {5 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b^{2}}\) \(124\)
default \(\frac {3 x^{\frac {2}{3}}}{2 b^{2}}-\frac {3 a \left (-\frac {x^{\frac {2}{3}}}{3 \left (b x +a \right )}-\frac {5 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {5 \ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {5 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{9 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b^{2}}\) \(124\)
risch \(\frac {3 x^{\frac {2}{3}}}{2 b^{2}}-\frac {a \left (-\frac {x^{\frac {2}{3}}}{b x +a}-\frac {5 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {5 \ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {5 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{b^{2}}\) \(124\)

Input:

int(x^(5/3)/(b*x+a)^2,x,method=_RETURNVERBOSE)
 

Output:

3/2*x^(2/3)/b^2-3*a/b^2*(-1/3*x^(2/3)/(b*x+a)-5/9/b/(a/b)^(1/3)*ln(x^(1/3) 
+(a/b)^(1/3))+5/18/b/(a/b)^(1/3)*ln(x^(2/3)-(a/b)^(1/3)*x^(1/3)+(a/b)^(2/3 
))+5/9*3^(1/2)/b/(a/b)^(1/3)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3)-1)) 
)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.26 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=-\frac {10 \, \sqrt {3} {\left (b x + a\right )} \left (\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} \arctan \left (\frac {2 \, \sqrt {3} b x^{\frac {1}{3}} \left (\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} - \sqrt {3} a}{3 \, a}\right ) + 5 \, {\left (b x + a\right )} \left (\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} \log \left (-b x^{\frac {1}{3}} \left (\frac {a^{2}}{b^{2}}\right )^{\frac {2}{3}} + a x^{\frac {2}{3}} + a \left (\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}}\right ) - 10 \, {\left (b x + a\right )} \left (\frac {a^{2}}{b^{2}}\right )^{\frac {1}{3}} \log \left (b \left (\frac {a^{2}}{b^{2}}\right )^{\frac {2}{3}} + a x^{\frac {1}{3}}\right ) - 3 \, {\left (3 \, b x + 5 \, a\right )} x^{\frac {2}{3}}}{6 \, {\left (b^{3} x + a b^{2}\right )}} \] Input:

integrate(x^(5/3)/(b*x+a)^2,x, algorithm="fricas")
 

Output:

-1/6*(10*sqrt(3)*(b*x + a)*(a^2/b^2)^(1/3)*arctan(1/3*(2*sqrt(3)*b*x^(1/3) 
*(a^2/b^2)^(1/3) - sqrt(3)*a)/a) + 5*(b*x + a)*(a^2/b^2)^(1/3)*log(-b*x^(1 
/3)*(a^2/b^2)^(2/3) + a*x^(2/3) + a*(a^2/b^2)^(1/3)) - 10*(b*x + a)*(a^2/b 
^2)^(1/3)*log(b*(a^2/b^2)^(2/3) + a*x^(1/3)) - 3*(3*b*x + 5*a)*x^(2/3))/(b 
^3*x + a*b^2)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 595 vs. \(2 (128) = 256\).

Time = 76.18 (sec) , antiderivative size = 595, normalized size of antiderivative = 4.61 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=\begin {cases} \tilde {\infty } x^{\frac {2}{3}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {3 x^{\frac {8}{3}}}{8 a^{2}} & \text {for}\: b = 0 \\\frac {3 x^{\frac {2}{3}}}{2 b^{2}} & \text {for}\: a = 0 \\- \frac {10 a^{2} \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} + \frac {5 a^{2} \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} - \frac {10 \sqrt {3} a^{2} \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} - \frac {10 a^{2} \log {\left (2 \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} + \frac {15 a b x^{\frac {2}{3}} \sqrt [3]{- \frac {a}{b}}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} - \frac {10 a b x \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} + \frac {5 a b x \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} - \frac {10 \sqrt {3} a b x \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} - \frac {10 a b x \log {\left (2 \right )}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} + \frac {9 b^{2} x^{\frac {5}{3}} \sqrt [3]{- \frac {a}{b}}}{6 a b^{3} \sqrt [3]{- \frac {a}{b}} + 6 b^{4} x \sqrt [3]{- \frac {a}{b}}} & \text {otherwise} \end {cases} \] Input:

integrate(x**(5/3)/(b*x+a)**2,x)
 

Output:

Piecewise((zoo*x**(2/3), Eq(a, 0) & Eq(b, 0)), (3*x**(8/3)/(8*a**2), Eq(b, 
 0)), (3*x**(2/3)/(2*b**2), Eq(a, 0)), (-10*a**2*log(x**(1/3) - (-a/b)**(1 
/3))/(6*a*b**3*(-a/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3)) + 5*a**2*log(4*x**( 
2/3) + 4*x**(1/3)*(-a/b)**(1/3) + 4*(-a/b)**(2/3))/(6*a*b**3*(-a/b)**(1/3) 
 + 6*b**4*x*(-a/b)**(1/3)) - 10*sqrt(3)*a**2*atan(2*sqrt(3)*x**(1/3)/(3*(- 
a/b)**(1/3)) + sqrt(3)/3)/(6*a*b**3*(-a/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3) 
) - 10*a**2*log(2)/(6*a*b**3*(-a/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3)) + 15* 
a*b*x**(2/3)*(-a/b)**(1/3)/(6*a*b**3*(-a/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3 
)) - 10*a*b*x*log(x**(1/3) - (-a/b)**(1/3))/(6*a*b**3*(-a/b)**(1/3) + 6*b* 
*4*x*(-a/b)**(1/3)) + 5*a*b*x*log(4*x**(2/3) + 4*x**(1/3)*(-a/b)**(1/3) + 
4*(-a/b)**(2/3))/(6*a*b**3*(-a/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3)) - 10*sq 
rt(3)*a*b*x*atan(2*sqrt(3)*x**(1/3)/(3*(-a/b)**(1/3)) + sqrt(3)/3)/(6*a*b* 
*3*(-a/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3)) - 10*a*b*x*log(2)/(6*a*b**3*(-a 
/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3)) + 9*b**2*x**(5/3)*(-a/b)**(1/3)/(6*a* 
b**3*(-a/b)**(1/3) + 6*b**4*x*(-a/b)**(1/3)), True))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.03 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=\frac {a x^{\frac {2}{3}}}{b^{3} x + a b^{2}} - \frac {5 \, \sqrt {3} a \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, b^{3} \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {3 \, x^{\frac {2}{3}}}{2 \, b^{2}} - \frac {5 \, a \log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, b^{3} \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {5 \, a \log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, b^{3} \left (\frac {a}{b}\right )^{\frac {1}{3}}} \] Input:

integrate(x^(5/3)/(b*x+a)^2,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

a*x^(2/3)/(b^3*x + a*b^2) - 5/3*sqrt(3)*a*arctan(1/3*sqrt(3)*(2*x^(1/3) - 
(a/b)^(1/3))/(a/b)^(1/3))/(b^3*(a/b)^(1/3)) + 3/2*x^(2/3)/b^2 - 5/6*a*log( 
x^(2/3) - x^(1/3)*(a/b)^(1/3) + (a/b)^(2/3))/(b^3*(a/b)^(1/3)) + 5/3*a*log 
(x^(1/3) + (a/b)^(1/3))/(b^3*(a/b)^(1/3))
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.05 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=\frac {5 \, \left (-\frac {a}{b}\right )^{\frac {2}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, b^{2}} + \frac {a x^{\frac {2}{3}}}{{\left (b x + a\right )} b^{2}} + \frac {3 \, x^{\frac {2}{3}}}{2 \, b^{2}} + \frac {5 \, \sqrt {3} \left (-a b^{2}\right )^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, b^{4}} - \frac {5 \, \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, b^{4}} \] Input:

integrate(x^(5/3)/(b*x+a)^2,x, algorithm="giac")
 

Output:

5/3*(-a/b)^(2/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/b^2 + a*x^(2/3)/((b*x + 
a)*b^2) + 3/2*x^(2/3)/b^2 + 5/3*sqrt(3)*(-a*b^2)^(2/3)*arctan(1/3*sqrt(3)* 
(2*x^(1/3) + (-a/b)^(1/3))/(-a/b)^(1/3))/b^4 - 5/6*(-a*b^2)^(2/3)*log(x^(2 
/3) + x^(1/3)*(-a/b)^(1/3) + (-a/b)^(2/3))/b^4
 

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.16 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=\frac {3\,x^{2/3}}{2\,b^2}+\frac {5\,a^{2/3}\,\ln \left (\frac {25\,a^{7/3}}{b^{10/3}}+\frac {25\,a^2\,x^{1/3}}{b^3}\right )}{3\,b^{8/3}}+\frac {a\,x^{2/3}}{x\,b^3+a\,b^2}+\frac {5\,a^{2/3}\,\ln \left (\frac {25\,a^{7/3}\,{\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2}{b^{10/3}}+\frac {25\,a^2\,x^{1/3}}{b^3}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3\,b^{8/3}}-\frac {5\,a^{2/3}\,\ln \left (\frac {25\,a^{7/3}\,{\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2}{b^{10/3}}+\frac {25\,a^2\,x^{1/3}}{b^3}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3\,b^{8/3}} \] Input:

int(x^(5/3)/(a + b*x)^2,x)
 

Output:

(3*x^(2/3))/(2*b^2) + (5*a^(2/3)*log((25*a^(7/3))/b^(10/3) + (25*a^2*x^(1/ 
3))/b^3))/(3*b^(8/3)) + (a*x^(2/3))/(a*b^2 + b^3*x) + (5*a^(2/3)*log((25*a 
^(7/3)*((3^(1/2)*1i)/2 - 1/2)^2)/b^(10/3) + (25*a^2*x^(1/3))/b^3)*((3^(1/2 
)*1i)/2 - 1/2))/(3*b^(8/3)) - (5*a^(2/3)*log((25*a^(7/3)*((3^(1/2)*1i)/2 + 
 1/2)^2)/b^(10/3) + (25*a^2*x^(1/3))/b^3)*((3^(1/2)*1i)/2 + 1/2))/(3*b^(8/ 
3))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.43 \[ \int \frac {x^{5/3}}{(a+b x)^2} \, dx=\frac {10 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 x^{\frac {1}{3}} b^{\frac {1}{3}}}{a^{\frac {1}{3}} \sqrt {3}}\right ) a^{2}+10 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 x^{\frac {1}{3}} b^{\frac {1}{3}}}{a^{\frac {1}{3}} \sqrt {3}}\right ) a b x +15 x^{\frac {2}{3}} b^{\frac {2}{3}} a^{\frac {4}{3}}+9 x^{\frac {5}{3}} b^{\frac {5}{3}} a^{\frac {1}{3}}-5 \,\mathrm {log}\left (a^{\frac {2}{3}}-x^{\frac {1}{3}} b^{\frac {1}{3}} a^{\frac {1}{3}}+x^{\frac {2}{3}} b^{\frac {2}{3}}\right ) a^{2}-5 \,\mathrm {log}\left (a^{\frac {2}{3}}-x^{\frac {1}{3}} b^{\frac {1}{3}} a^{\frac {1}{3}}+x^{\frac {2}{3}} b^{\frac {2}{3}}\right ) a b x +10 \,\mathrm {log}\left (a^{\frac {1}{3}}+x^{\frac {1}{3}} b^{\frac {1}{3}}\right ) a^{2}+10 \,\mathrm {log}\left (a^{\frac {1}{3}}+x^{\frac {1}{3}} b^{\frac {1}{3}}\right ) a b x}{6 b^{\frac {8}{3}} a^{\frac {1}{3}} \left (b x +a \right )} \] Input:

int(x^(5/3)/(b*x+a)^2,x)
 

Output:

(10*sqrt(3)*atan((a**(1/3) - 2*x**(1/3)*b**(1/3))/(a**(1/3)*sqrt(3)))*a**2 
 + 10*sqrt(3)*atan((a**(1/3) - 2*x**(1/3)*b**(1/3))/(a**(1/3)*sqrt(3)))*a* 
b*x + 15*x**(2/3)*b**(2/3)*a**(1/3)*a + 9*x**(2/3)*b**(2/3)*a**(1/3)*b*x - 
 5*log(a**(2/3) - x**(1/3)*b**(1/3)*a**(1/3) + x**(2/3)*b**(2/3))*a**2 - 5 
*log(a**(2/3) - x**(1/3)*b**(1/3)*a**(1/3) + x**(2/3)*b**(2/3))*a*b*x + 10 
*log(a**(1/3) + x**(1/3)*b**(1/3))*a**2 + 10*log(a**(1/3) + x**(1/3)*b**(1 
/3))*a*b*x)/(6*b**(2/3)*a**(1/3)*b**2*(a + b*x))