\(\int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx\) [728]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [C] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 101 \[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=\frac {4 a \sqrt [4]{x}}{b^2 \sqrt [4]{a+b x}}+\frac {\sqrt [4]{x} (a+b x)^{3/4}}{b^2}-\frac {5 a \arctan \left (\frac {\sqrt [4]{b} \sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )}{2 b^{9/4}}-\frac {5 a \text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )}{2 b^{9/4}} \] Output:

4*a*x^(1/4)/b^2/(b*x+a)^(1/4)+x^(1/4)*(b*x+a)^(3/4)/b^2-5/2*a*arctan(b^(1/ 
4)*x^(1/4)/(b*x+a)^(1/4))/b^(9/4)-5/2*a*arctanh(b^(1/4)*x^(1/4)/(b*x+a)^(1 
/4))/b^(9/4)
 

Mathematica [A] (verified)

Time = 0.43 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.85 \[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=\frac {\frac {2 \sqrt [4]{b} \sqrt [4]{x} (5 a+b x)}{\sqrt [4]{a+b x}}-5 a \arctan \left (\frac {\sqrt [4]{b} \sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )-5 a \text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )}{2 b^{9/4}} \] Input:

Integrate[x^(5/4)/(a + b*x)^(5/4),x]
 

Output:

((2*b^(1/4)*x^(1/4)*(5*a + b*x))/(a + b*x)^(1/4) - 5*a*ArcTan[(b^(1/4)*x^( 
1/4))/(a + b*x)^(1/4)] - 5*a*ArcTanh[(b^(1/4)*x^(1/4))/(a + b*x)^(1/4)])/( 
2*b^(9/4))
 

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.10, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {57, 60, 73, 770, 756, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx\)

\(\Big \downarrow \) 57

\(\displaystyle \frac {5 \int \frac {\sqrt [4]{x}}{\sqrt [4]{a+b x}}dx}{b}-\frac {4 x^{5/4}}{b \sqrt [4]{a+b x}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {5 \left (\frac {\sqrt [4]{x} (a+b x)^{3/4}}{b}-\frac {a \int \frac {1}{x^{3/4} \sqrt [4]{a+b x}}dx}{4 b}\right )}{b}-\frac {4 x^{5/4}}{b \sqrt [4]{a+b x}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {5 \left (\frac {\sqrt [4]{x} (a+b x)^{3/4}}{b}-\frac {a \int \frac {1}{\sqrt [4]{a+b x}}d\sqrt [4]{x}}{b}\right )}{b}-\frac {4 x^{5/4}}{b \sqrt [4]{a+b x}}\)

\(\Big \downarrow \) 770

\(\displaystyle \frac {5 \left (\frac {\sqrt [4]{x} (a+b x)^{3/4}}{b}-\frac {a \int \frac {1}{1-b x}d\frac {\sqrt [4]{x}}{\sqrt [4]{a+b x}}}{b}\right )}{b}-\frac {4 x^{5/4}}{b \sqrt [4]{a+b x}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {5 \left (\frac {\sqrt [4]{x} (a+b x)^{3/4}}{b}-\frac {a \left (\frac {1}{2} \int \frac {1}{1-\sqrt {b} \sqrt {x}}d\frac {\sqrt [4]{x}}{\sqrt [4]{a+b x}}+\frac {1}{2} \int \frac {1}{\sqrt {b} \sqrt {x}+1}d\frac {\sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )}{b}\right )}{b}-\frac {4 x^{5/4}}{b \sqrt [4]{a+b x}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {5 \left (\frac {\sqrt [4]{x} (a+b x)^{3/4}}{b}-\frac {a \left (\frac {1}{2} \int \frac {1}{1-\sqrt {b} \sqrt {x}}d\frac {\sqrt [4]{x}}{\sqrt [4]{a+b x}}+\frac {\arctan \left (\frac {\sqrt [4]{b} \sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )}{2 \sqrt [4]{b}}\right )}{b}\right )}{b}-\frac {4 x^{5/4}}{b \sqrt [4]{a+b x}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {5 \left (\frac {\sqrt [4]{x} (a+b x)^{3/4}}{b}-\frac {a \left (\frac {\arctan \left (\frac {\sqrt [4]{b} \sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )}{2 \sqrt [4]{b}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt [4]{x}}{\sqrt [4]{a+b x}}\right )}{2 \sqrt [4]{b}}\right )}{b}\right )}{b}-\frac {4 x^{5/4}}{b \sqrt [4]{a+b x}}\)

Input:

Int[x^(5/4)/(a + b*x)^(5/4),x]
 

Output:

(-4*x^(5/4))/(b*(a + b*x)^(1/4)) + (5*((x^(1/4)*(a + b*x)^(3/4))/b - (a*(A 
rcTan[(b^(1/4)*x^(1/4))/(a + b*x)^(1/4)]/(2*b^(1/4)) + ArcTanh[(b^(1/4)*x^ 
(1/4))/(a + b*x)^(1/4)]/(2*b^(1/4))))/b))/b
 

Defintions of rubi rules used

rule 57
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] & 
& GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m 
+ n + 2, 0] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c 
, d, m, n, x]
 

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 770
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n)   Subst[In 
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, 
 b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p + 1 
/n]
 
Maple [F]

\[\int \frac {x^{\frac {5}{4}}}{\left (b x +a \right )^{\frac {5}{4}}}d x\]

Input:

int(x^(5/4)/(b*x+a)^(5/4),x)
 

Output:

int(x^(5/4)/(b*x+a)^(5/4),x)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 310, normalized size of antiderivative = 3.07 \[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=-\frac {5 \, {\left (b^{3} x + a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (\frac {5 \, {\left ({\left (b x + a\right )}^{\frac {3}{4}} a x^{\frac {1}{4}} + {\left (b^{3} x + a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}}\right )}}{b x + a}\right ) - 5 \, {\left (b^{3} x + a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (\frac {5 \, {\left ({\left (b x + a\right )}^{\frac {3}{4}} a x^{\frac {1}{4}} - {\left (b^{3} x + a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}}\right )}}{b x + a}\right ) - 5 \, {\left (i \, b^{3} x + i \, a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (\frac {5 \, {\left ({\left (b x + a\right )}^{\frac {3}{4}} a x^{\frac {1}{4}} - {\left (i \, b^{3} x + i \, a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}}\right )}}{b x + a}\right ) - 5 \, {\left (-i \, b^{3} x - i \, a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}} \log \left (\frac {5 \, {\left ({\left (b x + a\right )}^{\frac {3}{4}} a x^{\frac {1}{4}} - {\left (-i \, b^{3} x - i \, a b^{2}\right )} \left (\frac {a^{4}}{b^{9}}\right )^{\frac {1}{4}}\right )}}{b x + a}\right ) - 4 \, {\left (b x + 5 \, a\right )} {\left (b x + a\right )}^{\frac {3}{4}} x^{\frac {1}{4}}}{4 \, {\left (b^{3} x + a b^{2}\right )}} \] Input:

integrate(x^(5/4)/(b*x+a)^(5/4),x, algorithm="fricas")
 

Output:

-1/4*(5*(b^3*x + a*b^2)*(a^4/b^9)^(1/4)*log(5*((b*x + a)^(3/4)*a*x^(1/4) + 
 (b^3*x + a*b^2)*(a^4/b^9)^(1/4))/(b*x + a)) - 5*(b^3*x + a*b^2)*(a^4/b^9) 
^(1/4)*log(5*((b*x + a)^(3/4)*a*x^(1/4) - (b^3*x + a*b^2)*(a^4/b^9)^(1/4)) 
/(b*x + a)) - 5*(I*b^3*x + I*a*b^2)*(a^4/b^9)^(1/4)*log(5*((b*x + a)^(3/4) 
*a*x^(1/4) - (I*b^3*x + I*a*b^2)*(a^4/b^9)^(1/4))/(b*x + a)) - 5*(-I*b^3*x 
 - I*a*b^2)*(a^4/b^9)^(1/4)*log(5*((b*x + a)^(3/4)*a*x^(1/4) - (-I*b^3*x - 
 I*a*b^2)*(a^4/b^9)^(1/4))/(b*x + a)) - 4*(b*x + 5*a)*(b*x + a)^(3/4)*x^(1 
/4))/(b^3*x + a*b^2)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.09 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.36 \[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=\frac {x^{\frac {9}{4}} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{4}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {\frac {b x e^{i \pi }}{a}} \right )}}{a^{\frac {5}{4}} \Gamma \left (\frac {13}{4}\right )} \] Input:

integrate(x**(5/4)/(b*x+a)**(5/4),x)
 

Output:

x**(9/4)*gamma(9/4)*hyper((5/4, 9/4), (13/4,), b*x*exp_polar(I*pi)/a)/(a** 
(5/4)*gamma(13/4))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.16 \[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=\frac {4 \, a b - \frac {5 \, {\left (b x + a\right )} a}{x}}{\frac {{\left (b x + a\right )}^{\frac {1}{4}} b^{3}}{x^{\frac {1}{4}}} - \frac {{\left (b x + a\right )}^{\frac {5}{4}} b^{2}}{x^{\frac {5}{4}}}} + \frac {5 \, a {\left (\frac {2 \, \arctan \left (\frac {{\left (b x + a\right )}^{\frac {1}{4}}}{b^{\frac {1}{4}} x^{\frac {1}{4}}}\right )}{b^{\frac {1}{4}}} + \frac {\log \left (-\frac {b^{\frac {1}{4}} - \frac {{\left (b x + a\right )}^{\frac {1}{4}}}{x^{\frac {1}{4}}}}{b^{\frac {1}{4}} + \frac {{\left (b x + a\right )}^{\frac {1}{4}}}{x^{\frac {1}{4}}}}\right )}{b^{\frac {1}{4}}}\right )}}{4 \, b^{2}} \] Input:

integrate(x^(5/4)/(b*x+a)^(5/4),x, algorithm="maxima")
 

Output:

(4*a*b - 5*(b*x + a)*a/x)/((b*x + a)^(1/4)*b^3/x^(1/4) - (b*x + a)^(5/4)*b 
^2/x^(5/4)) + 5/4*a*(2*arctan((b*x + a)^(1/4)/(b^(1/4)*x^(1/4)))/b^(1/4) + 
 log(-(b^(1/4) - (b*x + a)^(1/4)/x^(1/4))/(b^(1/4) + (b*x + a)^(1/4)/x^(1/ 
4)))/b^(1/4))/b^2
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^(5/4)/(b*x+a)^(5/4),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{-1,[0,1,1,0]%%%} / %%%{1,[0,0,0,1]%%%} Error: Bad Argument 
 Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=\int \frac {x^{5/4}}{{\left (a+b\,x\right )}^{5/4}} \,d x \] Input:

int(x^(5/4)/(a + b*x)^(5/4),x)
 

Output:

int(x^(5/4)/(a + b*x)^(5/4), x)
 

Reduce [F]

\[ \int \frac {x^{5/4}}{(a+b x)^{5/4}} \, dx=\int \frac {x^{\frac {5}{4}}}{\left (b x +a \right )^{\frac {1}{4}} a +\left (b x +a \right )^{\frac {1}{4}} b x}d x \] Input:

int(x^(5/4)/(b*x+a)^(5/4),x)
 

Output:

int((x**(1/4)*x)/((a + b*x)**(1/4)*a + (a + b*x)**(1/4)*b*x),x)