\(\int \frac {1}{x \sqrt [4]{x-x^2}} \, dx\) [770]

Optimal result
Mathematica [C] (verified)
Rubi [B] (warning: unable to verify)
Maple [C] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 36 \[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}+2 \sqrt {2} E\left (\left .\frac {1}{2} \arcsin (1-2 x)\right |2\right ) \] Output:

-4*(1-x)^(3/4)/x^(1/4)-2*2^(1/2)*EllipticE(sin(1/2*arcsin(-1+2*x)),2^(1/2) 
)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.94 \[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=-\frac {4 (-((-1+x) x))^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{4},\frac {7}{4},1-x\right )}{3 x^{3/4}} \] Input:

Integrate[1/(x*(x - x^2)^(1/4)),x]
 

Output:

(-4*(-((-1 + x)*x))^(3/4)*Hypergeometric2F1[3/4, 5/4, 7/4, 1 - x])/(3*x^(3 
/4))
 

Rubi [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(113\) vs. \(2(36)=72\).

Time = 0.27 (sec) , antiderivative size = 113, normalized size of antiderivative = 3.14, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {1137, 61, 73, 840, 842, 858, 807, 226}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx\)

\(\Big \downarrow \) 1137

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \int \frac {1}{\sqrt [4]{1-x} x^{5/4}}dx}{\sqrt [4]{x-x^2}}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \left (-2 \int \frac {1}{\sqrt [4]{1-x} \sqrt [4]{x}}dx-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-x^2}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \left (8 \int \frac {\sqrt {1-x}}{\sqrt [4]{x}}d\sqrt [4]{1-x}-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-x^2}}\)

\(\Big \downarrow \) 840

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \left (8 \left (-\frac {1}{2} \int \frac {1}{\sqrt {1-x} \sqrt [4]{x}}d\sqrt [4]{1-x}-\frac {x^{3/4}}{2 \sqrt [4]{1-x}}\right )-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-x^2}}\)

\(\Big \downarrow \) 842

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \left (8 \left (-\frac {\sqrt [4]{1-\frac {1}{1-x}} \sqrt [4]{1-x} \int \frac {1}{\sqrt [4]{1-\frac {1}{1-x}} (1-x)^{3/4}}d\sqrt [4]{1-x}}{2 \sqrt [4]{x}}-\frac {x^{3/4}}{2 \sqrt [4]{1-x}}\right )-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-x^2}}\)

\(\Big \downarrow \) 858

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \left (8 \left (\frac {\sqrt [4]{1-\frac {1}{1-x}} \sqrt [4]{1-x} \int \frac {1}{\sqrt [4]{1-x} \sqrt [4]{x}}d\frac {1}{\sqrt [4]{1-x}}}{2 \sqrt [4]{x}}-\frac {x^{3/4}}{2 \sqrt [4]{1-x}}\right )-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-x^2}}\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \left (8 \left (\frac {\sqrt [4]{1-\frac {1}{1-x}} \sqrt [4]{1-x} \int \frac {1}{\sqrt [4]{1-\sqrt {1-x}}}d\sqrt {1-x}}{4 \sqrt [4]{x}}-\frac {x^{3/4}}{2 \sqrt [4]{1-x}}\right )-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-x^2}}\)

\(\Big \downarrow \) 226

\(\displaystyle \frac {\sqrt [4]{1-x} \sqrt [4]{x} \left (8 \left (\frac {\sqrt [4]{1-\frac {1}{1-x}} \sqrt [4]{1-x} E\left (\left .\frac {1}{2} \arcsin \left (\sqrt {1-x}\right )\right |2\right )}{2 \sqrt [4]{x}}-\frac {x^{3/4}}{2 \sqrt [4]{1-x}}\right )-\frac {4 (1-x)^{3/4}}{\sqrt [4]{x}}\right )}{\sqrt [4]{x-x^2}}\)

Input:

Int[1/(x*(x - x^2)^(1/4)),x]
 

Output:

((1 - x)^(1/4)*x^(1/4)*((-4*(1 - x)^(3/4))/x^(1/4) + 8*(-1/2*x^(3/4)/(1 - 
x)^(1/4) + ((1 - (1 - x)^(-1))^(1/4)*(1 - x)^(1/4)*EllipticE[ArcSin[Sqrt[1 
 - x]]/2, 2])/(2*x^(1/4)))))/(x - x^2)^(1/4)
 

Defintions of rubi rules used

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 226
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2/(a^(1/4)*Rt[-b/a, 2] 
))*EllipticE[(1/2)*ArcSin[Rt[-b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ 
[a, 0] && NegQ[b/a]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 840
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(1/4), x_Symbol] :> Simp[(a + b*x^4)^(3/4) 
/(2*b*x), x] + Simp[a/(2*b)   Int[1/(x^2*(a + b*x^4)^(1/4)), x], x] /; Free 
Q[{a, b}, x] && NegQ[b/a]
 

rule 842
Int[1/((x_)^2*((a_) + (b_.)*(x_)^4)^(1/4)), x_Symbol] :> Simp[x*((1 + a/(b* 
x^4))^(1/4)/(a + b*x^4)^(1/4))   Int[1/(x^3*(1 + a/(b*x^4))^(1/4)), x], x] 
/; FreeQ[{a, b}, x] && NegQ[b/a]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 

rule 1137
Int[((e_.)*(x_))^(m_)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[( 
e*x)^m*((b*x + c*x^2)^p/(x^(m + p)*(b + c*x)^p))   Int[x^(m + p)*(b + c*x)^ 
p, x], x] /; FreeQ[{b, c, e, m}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.36

method result size
meijerg \(-\frac {4 \operatorname {hypergeom}\left (\left [-\frac {1}{4}, \frac {1}{4}\right ], \left [\frac {3}{4}\right ], x\right )}{x^{\frac {1}{4}}}\) \(13\)
risch \(\frac {-4+4 x}{\left (-x \left (-1+x \right )\right )^{\frac {1}{4}}}-\frac {8 x^{\frac {3}{4}} \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {3}{4}\right ], \left [\frac {7}{4}\right ], x\right )}{3}\) \(27\)

Input:

int(1/x/(-x^2+x)^(1/4),x,method=_RETURNVERBOSE)
 

Output:

-4/x^(1/4)*hypergeom([-1/4,1/4],[3/4],x)
 

Fricas [F]

\[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=\int { \frac {1}{{\left (-x^{2} + x\right )}^{\frac {1}{4}} x} \,d x } \] Input:

integrate(1/x/(-x^2+x)^(1/4),x, algorithm="fricas")
 

Output:

integral(-(-x^2 + x)^(3/4)/(x^3 - x^2), x)
 

Sympy [F]

\[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=\int \frac {1}{x \sqrt [4]{- x \left (x - 1\right )}}\, dx \] Input:

integrate(1/x/(-x**2+x)**(1/4),x)
 

Output:

Integral(1/(x*(-x*(x - 1))**(1/4)), x)
 

Maxima [F]

\[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=\int { \frac {1}{{\left (-x^{2} + x\right )}^{\frac {1}{4}} x} \,d x } \] Input:

integrate(1/x/(-x^2+x)^(1/4),x, algorithm="maxima")
 

Output:

integrate(1/((-x^2 + x)^(1/4)*x), x)
 

Giac [F]

\[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=\int { \frac {1}{{\left (-x^{2} + x\right )}^{\frac {1}{4}} x} \,d x } \] Input:

integrate(1/x/(-x^2+x)^(1/4),x, algorithm="giac")
 

Output:

integrate(1/((-x^2 + x)^(1/4)*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=\int \frac {1}{x\,{\left (x-x^2\right )}^{1/4}} \,d x \] Input:

int(1/(x*(x - x^2)^(1/4)),x)
 

Output:

int(1/(x*(x - x^2)^(1/4)), x)
 

Reduce [F]

\[ \int \frac {1}{x \sqrt [4]{x-x^2}} \, dx=\int \frac {1}{x^{\frac {5}{4}} \left (1-x \right )^{\frac {1}{4}}}d x \] Input:

int(1/x/(-x^2+x)^(1/4),x)
 

Output:

int(1/(x**(1/4)*( - x + 1)**(1/4)*x),x)