\(\int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx\) [249]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 82 \[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=-\frac {2 i}{5 a^2 (a-i a x)^{5/4} \sqrt [4]{a+i a x}}+\frac {6 \sqrt [4]{1+x^2} E\left (\left .\frac {\arctan (x)}{2}\right |2\right )}{5 a^3 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}} \] Output:

-2/5*I/a^2/(a-I*a*x)^(5/4)/(a+I*a*x)^(1/4)+6/5*(x^2+1)^(1/4)*EllipticE(sin 
(1/2*arctan(x)),2^(1/2))/a^3/(a-I*a*x)^(1/4)/(a+I*a*x)^(1/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.02 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.85 \[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=-\frac {i 2^{3/4} \sqrt [4]{1+i x} \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},\frac {5}{4},-\frac {1}{4},\frac {1}{2}-\frac {i x}{2}\right )}{5 a^2 (a-i a x)^{5/4} \sqrt [4]{a+i a x}} \] Input:

Integrate[1/((a - I*a*x)^(9/4)*(a + I*a*x)^(5/4)),x]
 

Output:

((-1/5*I)*2^(3/4)*(1 + I*x)^(1/4)*Hypergeometric2F1[-5/4, 5/4, -1/4, 1/2 - 
 (I/2)*x])/(a^2*(a - I*a*x)^(5/4)*(a + I*a*x)^(1/4))
 

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {61, 46, 213, 212}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {3 \int \frac {1}{(a-i a x)^{5/4} (i x a+a)^{5/4}}dx}{5 a}-\frac {2 i}{5 a^2 (a-i a x)^{5/4} \sqrt [4]{a+i a x}}\)

\(\Big \downarrow \) 46

\(\displaystyle \frac {3 \sqrt [4]{a^2 x^2+a^2} \int \frac {1}{\left (x^2 a^2+a^2\right )^{5/4}}dx}{5 a \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}-\frac {2 i}{5 a^2 (a-i a x)^{5/4} \sqrt [4]{a+i a x}}\)

\(\Big \downarrow \) 213

\(\displaystyle \frac {3 \sqrt [4]{x^2+1} \int \frac {1}{\left (x^2+1\right )^{5/4}}dx}{5 a^3 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}-\frac {2 i}{5 a^2 (a-i a x)^{5/4} \sqrt [4]{a+i a x}}\)

\(\Big \downarrow \) 212

\(\displaystyle \frac {6 \sqrt [4]{x^2+1} E\left (\left .\frac {\arctan (x)}{2}\right |2\right )}{5 a^3 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}-\frac {2 i}{5 a^2 (a-i a x)^{5/4} \sqrt [4]{a+i a x}}\)

Input:

Int[1/((a - I*a*x)^(9/4)*(a + I*a*x)^(5/4)),x]
 

Output:

((-2*I)/5)/(a^2*(a - I*a*x)^(5/4)*(a + I*a*x)^(1/4)) + (6*(1 + x^2)^(1/4)* 
EllipticE[ArcTan[x]/2, 2])/(5*a^3*(a - I*a*x)^(1/4)*(a + I*a*x)^(1/4))
 

Defintions of rubi rules used

rule 46
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(a 
 + b*x)^FracPart[m]*((c + d*x)^FracPart[m]/(a*c + b*d*x^2)^FracPart[m])   I 
nt[(a*c + b*d*x^2)^m, x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b*c + a*d, 
 0] &&  !IntegerQ[2*m]
 

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 212
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]) 
)*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 213
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(1 + b*(x^2/a))^(1/4)/( 
a*(a + b*x^2)^(1/4))   Int[1/(1 + b*(x^2/a))^(5/4), x], x] /; FreeQ[{a, b}, 
 x] && PosQ[a] && PosQ[b/a]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.19 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.30

method result size
risch \(\frac {\frac {6}{5} x^{2}+\frac {6}{5} i x +\frac {2}{5}}{\left (x +i\right ) a^{3} \left (-a \left (i x -1\right )\right )^{\frac {1}{4}} \left (a \left (i x +1\right )\right )^{\frac {1}{4}}}-\frac {3 x \operatorname {hypergeom}\left (\left [\frac {1}{4}, \frac {1}{2}\right ], \left [\frac {3}{2}\right ], -x^{2}\right ) \left (-a^{2} \left (i x -1\right ) \left (i x +1\right )\right )^{\frac {1}{4}}}{5 \left (a^{2}\right )^{\frac {1}{4}} a^{3} \left (-a \left (i x -1\right )\right )^{\frac {1}{4}} \left (a \left (i x +1\right )\right )^{\frac {1}{4}}}\) \(107\)

Input:

int(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(5/4),x,method=_RETURNVERBOSE)
 

Output:

2/5*(3*I*x+3*x^2+1)/(x+I)/a^3/(-a*(I*x-1))^(1/4)/(a*(I*x+1))^(1/4)-3/5/(a^ 
2)^(1/4)*x*hypergeom([1/4,1/2],[3/2],-x^2)/a^3*(-a^2*(I*x-1)*(I*x+1))^(1/4 
)/(-a*(I*x-1))^(1/4)/(a*(I*x+1))^(1/4)
 

Fricas [F]

\[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=\int { \frac {1}{{\left (i \, a x + a\right )}^{\frac {5}{4}} {\left (-i \, a x + a\right )}^{\frac {9}{4}}} \,d x } \] Input:

integrate(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(5/4),x, algorithm="fricas")
 

Output:

1/5*(2*(I*a*x + a)^(3/4)*(-I*a*x + a)^(3/4)*(3*x^2 + 3*I*x + 1) + 5*(a^5*x 
^3 + I*a^5*x^2 + a^5*x + I*a^5)*integral(-3/5*(I*a*x + a)^(3/4)*(-I*a*x + 
a)^(3/4)/(a^5*x^2 + a^5), x))/(a^5*x^3 + I*a^5*x^2 + a^5*x + I*a^5)
 

Sympy [F]

\[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=\int \frac {1}{\left (i a \left (x - i\right )\right )^{\frac {5}{4}} \left (- i a \left (x + i\right )\right )^{\frac {9}{4}}}\, dx \] Input:

integrate(1/(a-I*a*x)**(9/4)/(a+I*a*x)**(5/4),x)
 

Output:

Integral(1/((I*a*(x - I))**(5/4)*(-I*a*(x + I))**(9/4)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(5/4),x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(5/4),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Warning, need to choose a branch fo 
r the root of a polynomial with parameters. This might be wrong.The choice 
 was done
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=\int \frac {1}{{\left (a-a\,x\,1{}\mathrm {i}\right )}^{9/4}\,{\left (a+a\,x\,1{}\mathrm {i}\right )}^{5/4}} \,d x \] Input:

int(1/((a - a*x*1i)^(9/4)*(a + a*x*1i)^(5/4)),x)
 

Output:

int(1/((a - a*x*1i)^(9/4)*(a + a*x*1i)^(5/4)), x)
 

Reduce [F]

\[ \int \frac {1}{(a-i a x)^{9/4} (a+i a x)^{5/4}} \, dx=-\frac {\int \frac {1}{\left (i x +1\right )^{\frac {1}{4}} \left (-i x +1\right )^{\frac {1}{4}} i \,x^{3}+\left (i x +1\right )^{\frac {1}{4}} \left (-i x +1\right )^{\frac {1}{4}} i x -\left (i x +1\right )^{\frac {1}{4}} \left (-i x +1\right )^{\frac {1}{4}} x^{2}-\left (i x +1\right )^{\frac {1}{4}} \left (-i x +1\right )^{\frac {1}{4}}}d x}{\sqrt {a}\, a^{3}} \] Input:

int(1/(a-I*a*x)^(9/4)/(a+I*a*x)^(5/4),x)
 

Output:

( - int(1/((i*x + 1)**(1/4)*( - i*x + 1)**(1/4)*i*x**3 + (i*x + 1)**(1/4)* 
( - i*x + 1)**(1/4)*i*x - (i*x + 1)**(1/4)*( - i*x + 1)**(1/4)*x**2 - (i*x 
 + 1)**(1/4)*( - i*x + 1)**(1/4)),x))/(sqrt(a)*a**3)