\(\int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx\) [589]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 127 \[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx=\frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{d}-\frac {(b c-a d) \arctan \left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{2 b^{3/4} d^{5/4}}-\frac {(b c-a d) \text {arctanh}\left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{c+d x}}\right )}{2 b^{3/4} d^{5/4}} \] Output:

(b*x+a)^(1/4)*(d*x+c)^(3/4)/d-1/2*(-a*d+b*c)*arctan(d^(1/4)*(b*x+a)^(1/4)/ 
b^(1/4)/(d*x+c)^(1/4))/b^(3/4)/d^(5/4)-1/2*(-a*d+b*c)*arctanh(d^(1/4)*(b*x 
+a)^(1/4)/b^(1/4)/(d*x+c)^(1/4))/b^(3/4)/d^(5/4)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.97 \[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx=\frac {2 b^{3/4} \sqrt [4]{d} \sqrt [4]{a+b x} (c+d x)^{3/4}+(b c-a d) \arctan \left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{d} \sqrt [4]{a+b x}}\right )+(-b c+a d) \text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{d} \sqrt [4]{a+b x}}\right )}{2 b^{3/4} d^{5/4}} \] Input:

Integrate[(a + b*x)^(1/4)/(c + d*x)^(1/4),x]
 

Output:

(2*b^(3/4)*d^(1/4)*(a + b*x)^(1/4)*(c + d*x)^(3/4) + (b*c - a*d)*ArcTan[(b 
^(1/4)*(c + d*x)^(1/4))/(d^(1/4)*(a + b*x)^(1/4))] + (-(b*c) + a*d)*ArcTan 
h[(b^(1/4)*(c + d*x)^(1/4))/(d^(1/4)*(a + b*x)^(1/4))])/(2*b^(3/4)*d^(5/4) 
)
 

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.23, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {60, 73, 770, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{d}-\frac {(b c-a d) \int \frac {1}{(a+b x)^{3/4} \sqrt [4]{c+d x}}dx}{4 d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{d}-\frac {(b c-a d) \int \frac {1}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}d\sqrt [4]{a+b x}}{b d}\)

\(\Big \downarrow \) 770

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{d}-\frac {(b c-a d) \int \frac {1}{1-\frac {d (a+b x)}{b}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}}{b d}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{d}-\frac {(b c-a d) \left (\frac {1}{2} \sqrt {b} \int \frac {1}{\sqrt {b}-\sqrt {d} \sqrt {a+b x}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}+\frac {1}{2} \sqrt {b} \int \frac {1}{\sqrt {b}+\sqrt {d} \sqrt {a+b x}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}\right )}{b d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{d}-\frac {(b c-a d) \left (\frac {1}{2} \sqrt {b} \int \frac {1}{\sqrt {b}-\sqrt {d} \sqrt {a+b x}}d\frac {\sqrt [4]{a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}+\frac {\sqrt [4]{b} \arctan \left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{2 \sqrt [4]{d}}\right )}{b d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt [4]{a+b x} (c+d x)^{3/4}}{d}-\frac {(b c-a d) \left (\frac {\sqrt [4]{b} \arctan \left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{2 \sqrt [4]{d}}+\frac {\sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt [4]{d} \sqrt [4]{a+b x}}{\sqrt [4]{b} \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{2 \sqrt [4]{d}}\right )}{b d}\)

Input:

Int[(a + b*x)^(1/4)/(c + d*x)^(1/4),x]
 

Output:

((a + b*x)^(1/4)*(c + d*x)^(3/4))/d - ((b*c - a*d)*((b^(1/4)*ArcTan[(d^(1/ 
4)*(a + b*x)^(1/4))/(b^(1/4)*(c - (a*d)/b + (d*(a + b*x))/b)^(1/4))])/(2*d 
^(1/4)) + (b^(1/4)*ArcTanh[(d^(1/4)*(a + b*x)^(1/4))/(b^(1/4)*(c - (a*d)/b 
 + (d*(a + b*x))/b)^(1/4))])/(2*d^(1/4))))/(b*d)
 

Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 770
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n)   Subst[In 
t[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, 
 b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p + 1 
/n]
 
Maple [F]

\[\int \frac {\left (b x +a \right )^{\frac {1}{4}}}{\left (x d +c \right )^{\frac {1}{4}}}d x\]

Input:

int((b*x+a)^(1/4)/(d*x+c)^(1/4),x)
 

Output:

int((b*x+a)^(1/4)/(d*x+c)^(1/4),x)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 686, normalized size of antiderivative = 5.40 \[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx =\text {Too large to display} \] Input:

integrate((b*x+a)^(1/4)/(d*x+c)^(1/4),x, algorithm="fricas")
 

Output:

-1/4*(d*((b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^ 
4*d^4)/(b^3*d^5))^(1/4)*log(-((b*c - a*d)*(b*x + a)^(1/4)*(d*x + c)^(3/4) 
+ (b*d^2*x + b*c*d)*((b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3* 
b*c*d^3 + a^4*d^4)/(b^3*d^5))^(1/4))/(d*x + c)) - d*((b^4*c^4 - 4*a*b^3*c^ 
3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(b^3*d^5))^(1/4)*log(-( 
(b*c - a*d)*(b*x + a)^(1/4)*(d*x + c)^(3/4) - (b*d^2*x + b*c*d)*((b^4*c^4 
- 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(b^3*d^5))^ 
(1/4))/(d*x + c)) + I*d*((b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4* 
a^3*b*c*d^3 + a^4*d^4)/(b^3*d^5))^(1/4)*log(-((b*c - a*d)*(b*x + a)^(1/4)* 
(d*x + c)^(3/4) + (I*b*d^2*x + I*b*c*d)*((b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2* 
b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(b^3*d^5))^(1/4))/(d*x + c)) - I*d* 
((b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/( 
b^3*d^5))^(1/4)*log(-((b*c - a*d)*(b*x + a)^(1/4)*(d*x + c)^(3/4) + (-I*b* 
d^2*x - I*b*c*d)*((b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c 
*d^3 + a^4*d^4)/(b^3*d^5))^(1/4))/(d*x + c)) - 4*(b*x + a)^(1/4)*(d*x + c) 
^(3/4))/d
 

Sympy [F]

\[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx=\int \frac {\sqrt [4]{a + b x}}{\sqrt [4]{c + d x}}\, dx \] Input:

integrate((b*x+a)**(1/4)/(d*x+c)**(1/4),x)
 

Output:

Integral((a + b*x)**(1/4)/(c + d*x)**(1/4), x)
 

Maxima [F]

\[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx=\int { \frac {{\left (b x + a\right )}^{\frac {1}{4}}}{{\left (d x + c\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate((b*x+a)^(1/4)/(d*x+c)^(1/4),x, algorithm="maxima")
 

Output:

integrate((b*x + a)^(1/4)/(d*x + c)^(1/4), x)
 

Giac [F]

\[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx=\int { \frac {{\left (b x + a\right )}^{\frac {1}{4}}}{{\left (d x + c\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate((b*x+a)^(1/4)/(d*x+c)^(1/4),x, algorithm="giac")
 

Output:

integrate((b*x + a)^(1/4)/(d*x + c)^(1/4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx=\int \frac {{\left (a+b\,x\right )}^{1/4}}{{\left (c+d\,x\right )}^{1/4}} \,d x \] Input:

int((a + b*x)^(1/4)/(c + d*x)^(1/4),x)
 

Output:

int((a + b*x)^(1/4)/(c + d*x)^(1/4), x)
 

Reduce [F]

\[ \int \frac {\sqrt [4]{a+b x}}{\sqrt [4]{c+d x}} \, dx=\int \frac {\left (b x +a \right )^{\frac {1}{4}}}{\left (d x +c \right )^{\frac {1}{4}}}d x \] Input:

int((b*x+a)^(1/4)/(d*x+c)^(1/4),x)
 

Output:

int((a + b*x)**(1/4)/(c + d*x)**(1/4),x)