\(\int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx\) [596]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 125 \[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {(b c-a d)^2 \sqrt [4]{-\frac {b d (a+b x) (c+d x)}{(b c-a d)^2}} E\left (\left .\frac {1}{2} \arcsin \left (\frac {b c+a d+2 b d x}{b c-a d}\right )\right |2\right )}{\sqrt {2} b d^2 \sqrt [4]{a+b x} \sqrt [4]{c+d x}} \] Output:

2/3*(b*x+a)^(3/4)*(d*x+c)^(3/4)/d-1/2*(-a*d+b*c)^2*(-b*d*(b*x+a)*(d*x+c)/( 
-a*d+b*c)^2)^(1/4)*EllipticE(sin(1/2*arcsin((2*b*d*x+a*d+b*c)/(-a*d+b*c))) 
,2^(1/2))*2^(1/2)/b/d^2/(b*x+a)^(1/4)/(d*x+c)^(1/4)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.02 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.58 \[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\frac {4 (a+b x)^{7/4} \sqrt [4]{\frac {b (c+d x)}{b c-a d}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {7}{4},\frac {11}{4},\frac {d (a+b x)}{-b c+a d}\right )}{7 b \sqrt [4]{c+d x}} \] Input:

Integrate[(a + b*x)^(3/4)/(c + d*x)^(1/4),x]
 

Output:

(4*(a + b*x)^(7/4)*((b*(c + d*x))/(b*c - a*d))^(1/4)*Hypergeometric2F1[1/4 
, 7/4, 11/4, (d*(a + b*x))/(-(b*c) + a*d)])/(7*b*(c + d*x)^(1/4))
 

Rubi [A] (warning: unable to verify)

Time = 0.33 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.61, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {60, 73, 839, 813, 858, 807, 212}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {(b c-a d) \int \frac {1}{\sqrt [4]{a+b x} \sqrt [4]{c+d x}}dx}{2 d}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {2 (b c-a d) \int \frac {\sqrt {a+b x}}{\sqrt [4]{c-\frac {a d}{b}+\frac {d (a+b x)}{b}}}d\sqrt [4]{a+b x}}{b d}\)

\(\Big \downarrow \) 839

\(\displaystyle \frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {2 (b c-a d) \left (\frac {(a+b x)^{3/4}}{2 \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}-\frac {1}{2} \left (c-\frac {a d}{b}\right ) \int \frac {\sqrt {a+b x}}{\left (c-\frac {a d}{b}+\frac {d (a+b x)}{b}\right )^{5/4}}d\sqrt [4]{a+b x}\right )}{b d}\)

\(\Big \downarrow \) 813

\(\displaystyle \frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {2 (b c-a d) \left (\frac {(a+b x)^{3/4}}{2 \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}-\frac {b \sqrt [4]{a+b x} \left (c-\frac {a d}{b}\right ) \sqrt [4]{\frac {b c-a d}{d (a+b x)}+1} \int \frac {1}{(a+b x)^{3/4} \left (\frac {b c-a d}{d (a+b x)}+1\right )^{5/4}}d\sqrt [4]{a+b x}}{2 d \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{b d}\)

\(\Big \downarrow \) 858

\(\displaystyle \frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {2 (b c-a d) \left (\frac {b \sqrt [4]{a+b x} \left (c-\frac {a d}{b}\right ) \sqrt [4]{\frac {b c-a d}{d (a+b x)}+1} \int \frac {1}{\sqrt [4]{a+b x} \left (\frac {(b c-a d) (a+b x)}{d}+1\right )^{5/4}}d\frac {1}{\sqrt [4]{a+b x}}}{2 d \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}+\frac {(a+b x)^{3/4}}{2 \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{b d}\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {2 (b c-a d) \left (\frac {b \sqrt [4]{a+b x} \left (c-\frac {a d}{b}\right ) \sqrt [4]{\frac {b c-a d}{d (a+b x)}+1} \int \frac {1}{\left (\frac {\sqrt {a+b x} (b c-a d)}{d}+1\right )^{5/4}}d\sqrt {a+b x}}{4 d \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}+\frac {(a+b x)^{3/4}}{2 \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{b d}\)

\(\Big \downarrow \) 212

\(\displaystyle \frac {2 (a+b x)^{3/4} (c+d x)^{3/4}}{3 d}-\frac {2 (b c-a d) \left (\frac {b \sqrt [4]{a+b x} \left (c-\frac {a d}{b}\right ) \sqrt [4]{\frac {b c-a d}{d (a+b x)}+1} E\left (\left .\frac {1}{2} \arctan \left (\frac {\sqrt {b c-a d} \sqrt {a+b x}}{\sqrt {d}}\right )\right |2\right )}{2 \sqrt {d} \sqrt {b c-a d} \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}+\frac {(a+b x)^{3/4}}{2 \sqrt [4]{\frac {d (a+b x)}{b}-\frac {a d}{b}+c}}\right )}{b d}\)

Input:

Int[(a + b*x)^(3/4)/(c + d*x)^(1/4),x]
 

Output:

(2*(a + b*x)^(3/4)*(c + d*x)^(3/4))/(3*d) - (2*(b*c - a*d)*((a + b*x)^(3/4 
)/(2*(c - (a*d)/b + (d*(a + b*x))/b)^(1/4)) + (b*(c - (a*d)/b)*(a + b*x)^( 
1/4)*(1 + (b*c - a*d)/(d*(a + b*x)))^(1/4)*EllipticE[ArcTan[(Sqrt[b*c - a* 
d]*Sqrt[a + b*x])/Sqrt[d]]/2, 2])/(2*Sqrt[d]*Sqrt[b*c - a*d]*(c - (a*d)/b 
+ (d*(a + b*x))/b)^(1/4))))/(b*d)
 

Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 212
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]) 
)*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 813
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> Simp[x*((1 + a/(b*x^4) 
)^(1/4)/(b*(a + b*x^4)^(1/4)))   Int[1/(x^3*(1 + a/(b*x^4))^(5/4)), x], x] 
/; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 839
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(1/4), x_Symbol] :> Simp[x^3/(2*(a + b*x^4 
)^(1/4)), x] - Simp[a/2   Int[x^2/(a + b*x^4)^(5/4), x], x] /; FreeQ[{a, b} 
, x] && PosQ[b/a]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 
Maple [F]

\[\int \frac {\left (b x +a \right )^{\frac {3}{4}}}{\left (x d +c \right )^{\frac {1}{4}}}d x\]

Input:

int((b*x+a)^(3/4)/(d*x+c)^(1/4),x)
 

Output:

int((b*x+a)^(3/4)/(d*x+c)^(1/4),x)
 

Fricas [F]

\[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\int { \frac {{\left (b x + a\right )}^{\frac {3}{4}}}{{\left (d x + c\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate((b*x+a)^(3/4)/(d*x+c)^(1/4),x, algorithm="fricas")
 

Output:

integral((b*x + a)^(3/4)/(d*x + c)^(1/4), x)
 

Sympy [F]

\[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\int \frac {\left (a + b x\right )^{\frac {3}{4}}}{\sqrt [4]{c + d x}}\, dx \] Input:

integrate((b*x+a)**(3/4)/(d*x+c)**(1/4),x)
 

Output:

Integral((a + b*x)**(3/4)/(c + d*x)**(1/4), x)
 

Maxima [F]

\[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\int { \frac {{\left (b x + a\right )}^{\frac {3}{4}}}{{\left (d x + c\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate((b*x+a)^(3/4)/(d*x+c)^(1/4),x, algorithm="maxima")
 

Output:

integrate((b*x + a)^(3/4)/(d*x + c)^(1/4), x)
 

Giac [F]

\[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\int { \frac {{\left (b x + a\right )}^{\frac {3}{4}}}{{\left (d x + c\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate((b*x+a)^(3/4)/(d*x+c)^(1/4),x, algorithm="giac")
 

Output:

integrate((b*x + a)^(3/4)/(d*x + c)^(1/4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\int \frac {{\left (a+b\,x\right )}^{3/4}}{{\left (c+d\,x\right )}^{1/4}} \,d x \] Input:

int((a + b*x)^(3/4)/(c + d*x)^(1/4),x)
 

Output:

int((a + b*x)^(3/4)/(c + d*x)^(1/4), x)
 

Reduce [F]

\[ \int \frac {(a+b x)^{3/4}}{\sqrt [4]{c+d x}} \, dx=\int \frac {\left (b x +a \right )^{\frac {3}{4}}}{\left (d x +c \right )^{\frac {1}{4}}}d x \] Input:

int((b*x+a)^(3/4)/(d*x+c)^(1/4),x)
 

Output:

int((a + b*x)**(3/4)/(c + d*x)**(1/4),x)