\(\int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx\) [740]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 136 \[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx=\frac {6 \sqrt [6]{a+b x}}{19 (b c-a d) (c+d x)^{19/6}}+\frac {108 b \sqrt [6]{a+b x}}{247 (b c-a d)^2 (c+d x)^{13/6}}+\frac {1296 b^2 \sqrt [6]{a+b x}}{1729 (b c-a d)^3 (c+d x)^{7/6}}+\frac {7776 b^3 \sqrt [6]{a+b x}}{1729 (b c-a d)^4 \sqrt [6]{c+d x}} \] Output:

6/19*(b*x+a)^(1/6)/(-a*d+b*c)/(d*x+c)^(19/6)+108/247*b*(b*x+a)^(1/6)/(-a*d 
+b*c)^2/(d*x+c)^(13/6)+1296/1729*b^2*(b*x+a)^(1/6)/(-a*d+b*c)^3/(d*x+c)^(7 
/6)+7776/1729*b^3*(b*x+a)^(1/6)/(-a*d+b*c)^4/(d*x+c)^(1/6)
 

Mathematica [A] (verified)

Time = 0.88 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.87 \[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx=\frac {6 \sqrt [6]{a+b x} \left (-91 a^3 d^3+21 a^2 b d^2 (19 c+6 d x)-3 a b^2 d \left (247 c^2+228 c d x+72 d^2 x^2\right )+b^3 \left (1729 c^3+4446 c^2 d x+4104 c d^2 x^2+1296 d^3 x^3\right )\right )}{1729 (b c-a d)^4 (c+d x)^{19/6}} \] Input:

Integrate[1/((a + b*x)^(5/6)*(c + d*x)^(25/6)),x]
 

Output:

(6*(a + b*x)^(1/6)*(-91*a^3*d^3 + 21*a^2*b*d^2*(19*c + 6*d*x) - 3*a*b^2*d* 
(247*c^2 + 228*c*d*x + 72*d^2*x^2) + b^3*(1729*c^3 + 4446*c^2*d*x + 4104*c 
*d^2*x^2 + 1296*d^3*x^3)))/(1729*(b*c - a*d)^4*(c + d*x)^(19/6))
 

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.19, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {55, 55, 55, 48}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {18 b \int \frac {1}{(a+b x)^{5/6} (c+d x)^{19/6}}dx}{19 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{19 (c+d x)^{19/6} (b c-a d)}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {18 b \left (\frac {12 b \int \frac {1}{(a+b x)^{5/6} (c+d x)^{13/6}}dx}{13 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{13 (c+d x)^{13/6} (b c-a d)}\right )}{19 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{19 (c+d x)^{19/6} (b c-a d)}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {18 b \left (\frac {12 b \left (\frac {6 b \int \frac {1}{(a+b x)^{5/6} (c+d x)^{7/6}}dx}{7 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{7 (c+d x)^{7/6} (b c-a d)}\right )}{13 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{13 (c+d x)^{13/6} (b c-a d)}\right )}{19 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{19 (c+d x)^{19/6} (b c-a d)}\)

\(\Big \downarrow \) 48

\(\displaystyle \frac {18 b \left (\frac {12 b \left (\frac {36 b \sqrt [6]{a+b x}}{7 \sqrt [6]{c+d x} (b c-a d)^2}+\frac {6 \sqrt [6]{a+b x}}{7 (c+d x)^{7/6} (b c-a d)}\right )}{13 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{13 (c+d x)^{13/6} (b c-a d)}\right )}{19 (b c-a d)}+\frac {6 \sqrt [6]{a+b x}}{19 (c+d x)^{19/6} (b c-a d)}\)

Input:

Int[1/((a + b*x)^(5/6)*(c + d*x)^(25/6)),x]
 

Output:

(6*(a + b*x)^(1/6))/(19*(b*c - a*d)*(c + d*x)^(19/6)) + (18*b*((6*(a + b*x 
)^(1/6))/(13*(b*c - a*d)*(c + d*x)^(13/6)) + (12*b*((6*(a + b*x)^(1/6))/(7 
*(b*c - a*d)*(c + d*x)^(7/6)) + (36*b*(a + b*x)^(1/6))/(7*(b*c - a*d)^2*(c 
 + d*x)^(1/6))))/(13*(b*c - a*d))))/(19*(b*c - a*d))
 

Defintions of rubi rules used

rule 48
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp 
[(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{ 
a, b, c, d, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1]
 

rule 55
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(S 
implify[m + n + 2]/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^Simplify[m + 1]*( 
c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && ILtQ[Simplify[m + n + 
 2], 0] && NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[ 
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (SumSimplerQ[m, 1] ||  !SumSimp 
lerQ[n, 1])
 
Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.26

method result size
gosper \(-\frac {6 \left (b x +a \right )^{\frac {1}{6}} \left (-1296 d^{3} x^{3} b^{3}+216 x^{2} a \,b^{2} d^{3}-4104 x^{2} b^{3} c \,d^{2}-126 x \,a^{2} b \,d^{3}+684 x a \,b^{2} c \,d^{2}-4446 x \,b^{3} c^{2} d +91 a^{3} d^{3}-399 a^{2} b c \,d^{2}+741 a \,b^{2} c^{2} d -1729 b^{3} c^{3}\right )}{1729 \left (x d +c \right )^{\frac {19}{6}} \left (d^{4} a^{4}-4 a^{3} b c \,d^{3}+6 a^{2} b^{2} c^{2} d^{2}-4 a \,b^{3} c^{3} d +c^{4} b^{4}\right )}\) \(171\)
orering \(-\frac {6 \left (b x +a \right )^{\frac {1}{6}} \left (-1296 d^{3} x^{3} b^{3}+216 x^{2} a \,b^{2} d^{3}-4104 x^{2} b^{3} c \,d^{2}-126 x \,a^{2} b \,d^{3}+684 x a \,b^{2} c \,d^{2}-4446 x \,b^{3} c^{2} d +91 a^{3} d^{3}-399 a^{2} b c \,d^{2}+741 a \,b^{2} c^{2} d -1729 b^{3} c^{3}\right )}{1729 \left (x d +c \right )^{\frac {19}{6}} \left (d^{4} a^{4}-4 a^{3} b c \,d^{3}+6 a^{2} b^{2} c^{2} d^{2}-4 a \,b^{3} c^{3} d +c^{4} b^{4}\right )}\) \(171\)

Input:

int(1/(b*x+a)^(5/6)/(d*x+c)^(25/6),x,method=_RETURNVERBOSE)
 

Output:

-6/1729*(b*x+a)^(1/6)*(-1296*b^3*d^3*x^3+216*a*b^2*d^3*x^2-4104*b^3*c*d^2* 
x^2-126*a^2*b*d^3*x+684*a*b^2*c*d^2*x-4446*b^3*c^2*d*x+91*a^3*d^3-399*a^2* 
b*c*d^2+741*a*b^2*c^2*d-1729*b^3*c^3)/(d*x+c)^(19/6)/(a^4*d^4-4*a^3*b*c*d^ 
3+6*a^2*b^2*c^2*d^2-4*a*b^3*c^3*d+b^4*c^4)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 420 vs. \(2 (112) = 224\).

Time = 0.09 (sec) , antiderivative size = 420, normalized size of antiderivative = 3.09 \[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx=\frac {6 \, {\left (1296 \, b^{3} d^{3} x^{3} + 1729 \, b^{3} c^{3} - 741 \, a b^{2} c^{2} d + 399 \, a^{2} b c d^{2} - 91 \, a^{3} d^{3} + 216 \, {\left (19 \, b^{3} c d^{2} - a b^{2} d^{3}\right )} x^{2} + 18 \, {\left (247 \, b^{3} c^{2} d - 38 \, a b^{2} c d^{2} + 7 \, a^{2} b d^{3}\right )} x\right )} {\left (b x + a\right )}^{\frac {1}{6}} {\left (d x + c\right )}^{\frac {5}{6}}}{1729 \, {\left (b^{4} c^{8} - 4 \, a b^{3} c^{7} d + 6 \, a^{2} b^{2} c^{6} d^{2} - 4 \, a^{3} b c^{5} d^{3} + a^{4} c^{4} d^{4} + {\left (b^{4} c^{4} d^{4} - 4 \, a b^{3} c^{3} d^{5} + 6 \, a^{2} b^{2} c^{2} d^{6} - 4 \, a^{3} b c d^{7} + a^{4} d^{8}\right )} x^{4} + 4 \, {\left (b^{4} c^{5} d^{3} - 4 \, a b^{3} c^{4} d^{4} + 6 \, a^{2} b^{2} c^{3} d^{5} - 4 \, a^{3} b c^{2} d^{6} + a^{4} c d^{7}\right )} x^{3} + 6 \, {\left (b^{4} c^{6} d^{2} - 4 \, a b^{3} c^{5} d^{3} + 6 \, a^{2} b^{2} c^{4} d^{4} - 4 \, a^{3} b c^{3} d^{5} + a^{4} c^{2} d^{6}\right )} x^{2} + 4 \, {\left (b^{4} c^{7} d - 4 \, a b^{3} c^{6} d^{2} + 6 \, a^{2} b^{2} c^{5} d^{3} - 4 \, a^{3} b c^{4} d^{4} + a^{4} c^{3} d^{5}\right )} x\right )}} \] Input:

integrate(1/(b*x+a)^(5/6)/(d*x+c)^(25/6),x, algorithm="fricas")
 

Output:

6/1729*(1296*b^3*d^3*x^3 + 1729*b^3*c^3 - 741*a*b^2*c^2*d + 399*a^2*b*c*d^ 
2 - 91*a^3*d^3 + 216*(19*b^3*c*d^2 - a*b^2*d^3)*x^2 + 18*(247*b^3*c^2*d - 
38*a*b^2*c*d^2 + 7*a^2*b*d^3)*x)*(b*x + a)^(1/6)*(d*x + c)^(5/6)/(b^4*c^8 
- 4*a*b^3*c^7*d + 6*a^2*b^2*c^6*d^2 - 4*a^3*b*c^5*d^3 + a^4*c^4*d^4 + (b^4 
*c^4*d^4 - 4*a*b^3*c^3*d^5 + 6*a^2*b^2*c^2*d^6 - 4*a^3*b*c*d^7 + a^4*d^8)* 
x^4 + 4*(b^4*c^5*d^3 - 4*a*b^3*c^4*d^4 + 6*a^2*b^2*c^3*d^5 - 4*a^3*b*c^2*d 
^6 + a^4*c*d^7)*x^3 + 6*(b^4*c^6*d^2 - 4*a*b^3*c^5*d^3 + 6*a^2*b^2*c^4*d^4 
 - 4*a^3*b*c^3*d^5 + a^4*c^2*d^6)*x^2 + 4*(b^4*c^7*d - 4*a*b^3*c^6*d^2 + 6 
*a^2*b^2*c^5*d^3 - 4*a^3*b*c^4*d^4 + a^4*c^3*d^5)*x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx=\text {Timed out} \] Input:

integrate(1/(b*x+a)**(5/6)/(d*x+c)**(25/6),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx=\int { \frac {1}{{\left (b x + a\right )}^{\frac {5}{6}} {\left (d x + c\right )}^{\frac {25}{6}}} \,d x } \] Input:

integrate(1/(b*x+a)^(5/6)/(d*x+c)^(25/6),x, algorithm="maxima")
 

Output:

integrate(1/((b*x + a)^(5/6)*(d*x + c)^(25/6)), x)
 

Giac [F]

\[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx=\int { \frac {1}{{\left (b x + a\right )}^{\frac {5}{6}} {\left (d x + c\right )}^{\frac {25}{6}}} \,d x } \] Input:

integrate(1/(b*x+a)^(5/6)/(d*x+c)^(25/6),x, algorithm="giac")
 

Output:

integrate(1/((b*x + a)^(5/6)*(d*x + c)^(25/6)), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx=\int \frac {1}{{\left (a+b\,x\right )}^{5/6}\,{\left (c+d\,x\right )}^{25/6}} \,d x \] Input:

int(1/((a + b*x)^(5/6)*(c + d*x)^(25/6)),x)
 

Output:

int(1/((a + b*x)^(5/6)*(c + d*x)^(25/6)), x)
 

Reduce [B] (verification not implemented)

Time = 1.37 (sec) , antiderivative size = 985, normalized size of antiderivative = 7.24 \[ \int \frac {1}{(a+b x)^{5/6} (c+d x)^{25/6}} \, dx =\text {Too large to display} \] Input:

int(1/(b*x+a)^(5/6)/(d*x+c)^(25/6),x)
 

Output:

(2*(c + d*x)**(5/6)*( - 5*(a + b*x)**(3/2)*a**3*d**3 + 23*(a + b*x)**(3/2) 
*a**2*b*c*d**2 + 8*(a + b*x)**(3/2)*a**2*b*d**3*x - 47*(a + b*x)**(3/2)*a* 
b**2*c**2*d - 48*(a + b*x)**(3/2)*a*b**2*c*d**2*x - 16*(a + b*x)**(3/2)*a* 
b**2*d**3*x**2 + 29*(a + b*x)**(3/2)*b**3*c**3 + 40*(a + b*x)**(3/2)*b**3* 
c**2*d*x + 16*(a + b*x)**(3/2)*b**3*c*d**2*x**2 + 192*sqrt(a + b*x)*log((a 
 + b*x)**(1/6))*a*b**3*c**3 + 576*sqrt(a + b*x)*log((a + b*x)**(1/6))*a*b* 
*3*c**2*d*x + 576*sqrt(a + b*x)*log((a + b*x)**(1/6))*a*b**3*c*d**2*x**2 + 
 192*sqrt(a + b*x)*log((a + b*x)**(1/6))*a*b**3*d**3*x**3 + 192*sqrt(a + b 
*x)*log((a + b*x)**(1/6))*b**4*c**3*x + 576*sqrt(a + b*x)*log((a + b*x)**( 
1/6))*b**4*c**2*d*x**2 + 576*sqrt(a + b*x)*log((a + b*x)**(1/6))*b**4*c*d* 
*2*x**3 + 192*sqrt(a + b*x)*log((a + b*x)**(1/6))*b**4*d**3*x**4 - 192*sqr 
t(a + b*x)*log((c + d*x)**(1/6))*a*b**3*c**3 - 576*sqrt(a + b*x)*log((c + 
d*x)**(1/6))*a*b**3*c**2*d*x - 576*sqrt(a + b*x)*log((c + d*x)**(1/6))*a*b 
**3*c*d**2*x**2 - 192*sqrt(a + b*x)*log((c + d*x)**(1/6))*a*b**3*d**3*x**3 
 - 192*sqrt(a + b*x)*log((c + d*x)**(1/6))*b**4*c**3*x - 576*sqrt(a + b*x) 
*log((c + d*x)**(1/6))*b**4*c**2*d*x**2 - 576*sqrt(a + b*x)*log((c + d*x)* 
*(1/6))*b**4*c*d**2*x**3 - 192*sqrt(a + b*x)*log((c + d*x)**(1/6))*b**4*d* 
*3*x**4))/(35*(a + b*x)**(1/3)*(a**5*c**4*d**4 + 4*a**5*c**3*d**5*x + 6*a* 
*5*c**2*d**6*x**2 + 4*a**5*c*d**7*x**3 + a**5*d**8*x**4 - 4*a**4*b*c**5*d* 
*3 - 15*a**4*b*c**4*d**4*x - 20*a**4*b*c**3*d**5*x**2 - 10*a**4*b*c**2*...