\(\int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx\) [351]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 90 \[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=-\frac {B (e x)^{1+m}}{b e (2-m) (a+b x)^3}+\frac {(A b (2-m)+a B (1+m)) (e x)^{1+m} \operatorname {Hypergeometric2F1}\left (4,1+m,2+m,-\frac {b x}{a}\right )}{a^4 b e (2-m) (1+m)} \] Output:

-B*(e*x)^(1+m)/b/e/(2-m)/(b*x+a)^3+(A*b*(2-m)+a*B*(1+m))*(e*x)^(1+m)*hyper 
geom([4, 1+m],[2+m],-b*x/a)/a^4/b/e/(2-m)/(1+m)
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.80 \[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=\frac {x (e x)^m \left (\frac {a^3 (A b-a B)}{(a+b x)^3}-\frac {(A b (-2+m)-a B (1+m)) \operatorname {Hypergeometric2F1}\left (3,1+m,2+m,-\frac {b x}{a}\right )}{1+m}\right )}{3 a^4 b} \] Input:

Integrate[((e*x)^m*(A + B*x))/(a + b*x)^4,x]
 

Output:

(x*(e*x)^m*((a^3*(A*b - a*B))/(a + b*x)^3 - ((A*b*(-2 + m) - a*B*(1 + m))* 
Hypergeometric2F1[3, 1 + m, 2 + m, -((b*x)/a)])/(1 + m)))/(3*a^4*b)
 

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.01, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {87, 74}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(A+B x) (e x)^m}{(a+b x)^4} \, dx\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {(a B (m+1)+A b (2-m)) \int \frac {(e x)^m}{(a+b x)^3}dx}{3 a b}+\frac {(e x)^{m+1} (A b-a B)}{3 a b e (a+b x)^3}\)

\(\Big \downarrow \) 74

\(\displaystyle \frac {(e x)^{m+1} (a B (m+1)+A b (2-m)) \operatorname {Hypergeometric2F1}\left (3,m+1,m+2,-\frac {b x}{a}\right )}{3 a^4 b e (m+1)}+\frac {(e x)^{m+1} (A b-a B)}{3 a b e (a+b x)^3}\)

Input:

Int[((e*x)^m*(A + B*x))/(a + b*x)^4,x]
 

Output:

((A*b - a*B)*(e*x)^(1 + m))/(3*a*b*e*(a + b*x)^3) + ((A*b*(2 - m) + a*B*(1 
 + m))*(e*x)^(1 + m)*Hypergeometric2F1[3, 1 + m, 2 + m, -((b*x)/a)])/(3*a^ 
4*b*e*(1 + m))
 

Defintions of rubi rules used

rule 74
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[c^n*((b*x 
)^(m + 1)/(b*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*(x/c)], x] 
/; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[c, 0] 
 &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-d/(b*c), 0])))
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 
Maple [F]

\[\int \frac {\left (e x \right )^{m} \left (B x +A \right )}{\left (b x +a \right )^{4}}d x\]

Input:

int((e*x)^m*(B*x+A)/(b*x+a)^4,x)
 

Output:

int((e*x)^m*(B*x+A)/(b*x+a)^4,x)
 

Fricas [F]

\[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=\int { \frac {{\left (B x + A\right )} \left (e x\right )^{m}}{{\left (b x + a\right )}^{4}} \,d x } \] Input:

integrate((e*x)^m*(B*x+A)/(b*x+a)^4,x, algorithm="fricas")
 

Output:

integral((B*x + A)*(e*x)^m/(b^4*x^4 + 4*a*b^3*x^3 + 6*a^2*b^2*x^2 + 4*a^3* 
b*x + a^4), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.06 (sec) , antiderivative size = 4840, normalized size of antiderivative = 53.78 \[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=\text {Too large to display} \] Input:

integrate((e*x)**m*(B*x+A)/(b*x+a)**4,x)
 

Output:

A*(-a**3*e**m*m**4*x**(m + 1)*lerchphi(b*x*exp_polar(I*pi)/a, 1, m + 1)*ga 
mma(m + 1)/(6*a**7*gamma(m + 2) + 18*a**6*b*x*gamma(m + 2) + 18*a**5*b**2* 
x**2*gamma(m + 2) + 6*a**4*b**3*x**3*gamma(m + 2)) + 2*a**3*e**m*m**3*x**( 
m + 1)*lerchphi(b*x*exp_polar(I*pi)/a, 1, m + 1)*gamma(m + 1)/(6*a**7*gamm 
a(m + 2) + 18*a**6*b*x*gamma(m + 2) + 18*a**5*b**2*x**2*gamma(m + 2) + 6*a 
**4*b**3*x**3*gamma(m + 2)) + a**3*e**m*m**3*x**(m + 1)*gamma(m + 1)/(6*a* 
*7*gamma(m + 2) + 18*a**6*b*x*gamma(m + 2) + 18*a**5*b**2*x**2*gamma(m + 2 
) + 6*a**4*b**3*x**3*gamma(m + 2)) + a**3*e**m*m**2*x**(m + 1)*lerchphi(b* 
x*exp_polar(I*pi)/a, 1, m + 1)*gamma(m + 1)/(6*a**7*gamma(m + 2) + 18*a**6 
*b*x*gamma(m + 2) + 18*a**5*b**2*x**2*gamma(m + 2) + 6*a**4*b**3*x**3*gamm 
a(m + 2)) - 3*a**3*e**m*m**2*x**(m + 1)*gamma(m + 1)/(6*a**7*gamma(m + 2) 
+ 18*a**6*b*x*gamma(m + 2) + 18*a**5*b**2*x**2*gamma(m + 2) + 6*a**4*b**3* 
x**3*gamma(m + 2)) - 2*a**3*e**m*m*x**(m + 1)*lerchphi(b*x*exp_polar(I*pi) 
/a, 1, m + 1)*gamma(m + 1)/(6*a**7*gamma(m + 2) + 18*a**6*b*x*gamma(m + 2) 
 + 18*a**5*b**2*x**2*gamma(m + 2) + 6*a**4*b**3*x**3*gamma(m + 2)) + 2*a** 
3*e**m*m*x**(m + 1)*gamma(m + 1)/(6*a**7*gamma(m + 2) + 18*a**6*b*x*gamma( 
m + 2) + 18*a**5*b**2*x**2*gamma(m + 2) + 6*a**4*b**3*x**3*gamma(m + 2)) + 
 6*a**3*e**m*x**(m + 1)*gamma(m + 1)/(6*a**7*gamma(m + 2) + 18*a**6*b*x*ga 
mma(m + 2) + 18*a**5*b**2*x**2*gamma(m + 2) + 6*a**4*b**3*x**3*gamma(m + 2 
)) - 3*a**2*b*e**m*m**4*x*x**(m + 1)*lerchphi(b*x*exp_polar(I*pi)/a, 1,...
 

Maxima [F]

\[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=\int { \frac {{\left (B x + A\right )} \left (e x\right )^{m}}{{\left (b x + a\right )}^{4}} \,d x } \] Input:

integrate((e*x)^m*(B*x+A)/(b*x+a)^4,x, algorithm="maxima")
 

Output:

integrate((B*x + A)*(e*x)^m/(b*x + a)^4, x)
 

Giac [F]

\[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=\int { \frac {{\left (B x + A\right )} \left (e x\right )^{m}}{{\left (b x + a\right )}^{4}} \,d x } \] Input:

integrate((e*x)^m*(B*x+A)/(b*x+a)^4,x, algorithm="giac")
 

Output:

integrate((B*x + A)*(e*x)^m/(b*x + a)^4, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=\int \frac {{\left (e\,x\right )}^m\,\left (A+B\,x\right )}{{\left (a+b\,x\right )}^4} \,d x \] Input:

int(((e*x)^m*(A + B*x))/(a + b*x)^4,x)
 

Output:

int(((e*x)^m*(A + B*x))/(a + b*x)^4, x)
 

Reduce [F]

\[ \int \frac {(e x)^m (A+B x)}{(a+b x)^4} \, dx=\frac {e^{m} \left (x^{m}-\left (\int \frac {x^{m}}{b^{3} m \,x^{4}+3 a \,b^{2} m \,x^{3}-2 b^{3} x^{4}+3 a^{2} b m \,x^{2}-6 a \,b^{2} x^{3}+a^{3} m x -6 a^{2} b \,x^{2}-2 a^{3} x}d x \right ) a^{3} m^{2}+2 \left (\int \frac {x^{m}}{b^{3} m \,x^{4}+3 a \,b^{2} m \,x^{3}-2 b^{3} x^{4}+3 a^{2} b m \,x^{2}-6 a \,b^{2} x^{3}+a^{3} m x -6 a^{2} b \,x^{2}-2 a^{3} x}d x \right ) a^{3} m -2 \left (\int \frac {x^{m}}{b^{3} m \,x^{4}+3 a \,b^{2} m \,x^{3}-2 b^{3} x^{4}+3 a^{2} b m \,x^{2}-6 a \,b^{2} x^{3}+a^{3} m x -6 a^{2} b \,x^{2}-2 a^{3} x}d x \right ) a^{2} b \,m^{2} x +4 \left (\int \frac {x^{m}}{b^{3} m \,x^{4}+3 a \,b^{2} m \,x^{3}-2 b^{3} x^{4}+3 a^{2} b m \,x^{2}-6 a \,b^{2} x^{3}+a^{3} m x -6 a^{2} b \,x^{2}-2 a^{3} x}d x \right ) a^{2} b m x -\left (\int \frac {x^{m}}{b^{3} m \,x^{4}+3 a \,b^{2} m \,x^{3}-2 b^{3} x^{4}+3 a^{2} b m \,x^{2}-6 a \,b^{2} x^{3}+a^{3} m x -6 a^{2} b \,x^{2}-2 a^{3} x}d x \right ) a \,b^{2} m^{2} x^{2}+2 \left (\int \frac {x^{m}}{b^{3} m \,x^{4}+3 a \,b^{2} m \,x^{3}-2 b^{3} x^{4}+3 a^{2} b m \,x^{2}-6 a \,b^{2} x^{3}+a^{3} m x -6 a^{2} b \,x^{2}-2 a^{3} x}d x \right ) a \,b^{2} m \,x^{2}\right )}{b \left (b^{2} m \,x^{2}+2 a b m x -2 b^{2} x^{2}+a^{2} m -4 a b x -2 a^{2}\right )} \] Input:

int((e*x)^m*(B*x+A)/(b*x+a)^4,x)
 

Output:

(e**m*(x**m - int(x**m/(a**3*m*x - 2*a**3*x + 3*a**2*b*m*x**2 - 6*a**2*b*x 
**2 + 3*a*b**2*m*x**3 - 6*a*b**2*x**3 + b**3*m*x**4 - 2*b**3*x**4),x)*a**3 
*m**2 + 2*int(x**m/(a**3*m*x - 2*a**3*x + 3*a**2*b*m*x**2 - 6*a**2*b*x**2 
+ 3*a*b**2*m*x**3 - 6*a*b**2*x**3 + b**3*m*x**4 - 2*b**3*x**4),x)*a**3*m - 
 2*int(x**m/(a**3*m*x - 2*a**3*x + 3*a**2*b*m*x**2 - 6*a**2*b*x**2 + 3*a*b 
**2*m*x**3 - 6*a*b**2*x**3 + b**3*m*x**4 - 2*b**3*x**4),x)*a**2*b*m**2*x + 
 4*int(x**m/(a**3*m*x - 2*a**3*x + 3*a**2*b*m*x**2 - 6*a**2*b*x**2 + 3*a*b 
**2*m*x**3 - 6*a*b**2*x**3 + b**3*m*x**4 - 2*b**3*x**4),x)*a**2*b*m*x - in 
t(x**m/(a**3*m*x - 2*a**3*x + 3*a**2*b*m*x**2 - 6*a**2*b*x**2 + 3*a*b**2*m 
*x**3 - 6*a*b**2*x**3 + b**3*m*x**4 - 2*b**3*x**4),x)*a*b**2*m**2*x**2 + 2 
*int(x**m/(a**3*m*x - 2*a**3*x + 3*a**2*b*m*x**2 - 6*a**2*b*x**2 + 3*a*b** 
2*m*x**3 - 6*a*b**2*x**3 + b**3*m*x**4 - 2*b**3*x**4),x)*a*b**2*m*x**2))/( 
b*(a**2*m - 2*a**2 + 2*a*b*m*x - 4*a*b*x + b**2*m*x**2 - 2*b**2*x**2))