\(\int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx\) [158]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 215 \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=-\frac {12}{5} b^2 c x^{3/2} \sqrt {a+b x} \sqrt {a c-b c x}-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}-\frac {24 a^{7/2} \sqrt {b} c^2 \sqrt {1-\frac {b^2 x^2}{a^2}} E\left (\left .\arcsin \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )\right |-1\right )}{5 \sqrt {a+b x} \sqrt {a c-b c x}}+\frac {24 a^{7/2} \sqrt {b} c^2 \sqrt {1-\frac {b^2 x^2}{a^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right ),-1\right )}{5 \sqrt {a+b x} \sqrt {a c-b c x}} \] Output:

-12/5*b^2*c*x^(3/2)*(b*x+a)^(1/2)*(-b*c*x+a*c)^(1/2)-2*(b*x+a)^(3/2)*(-b*c 
*x+a*c)^(3/2)/x^(1/2)-24/5*a^(7/2)*b^(1/2)*c^2*(1-b^2*x^2/a^2)^(1/2)*Ellip 
ticE(b^(1/2)*x^(1/2)/a^(1/2),I)/(b*x+a)^(1/2)/(-b*c*x+a*c)^(1/2)+24/5*a^(7 
/2)*b^(1/2)*c^2*(1-b^2*x^2/a^2)^(1/2)*EllipticF(b^(1/2)*x^(1/2)/a^(1/2),I) 
/(b*x+a)^(1/2)/(-b*c*x+a*c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.47 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.32 \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=-\frac {2 a^2 c \sqrt {c (a-b x)} \sqrt {a+b x} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {1}{4},\frac {3}{4},\frac {b^2 x^2}{a^2}\right )}{\sqrt {x} \sqrt {1-\frac {b^2 x^2}{a^2}}} \] Input:

Integrate[((a + b*x)^(3/2)*(a*c - b*c*x)^(3/2))/x^(3/2),x]
 

Output:

(-2*a^2*c*Sqrt[c*(a - b*x)]*Sqrt[a + b*x]*Hypergeometric2F1[-3/2, -1/4, 3/ 
4, (b^2*x^2)/a^2])/(Sqrt[x]*Sqrt[1 - (b^2*x^2)/a^2])
 

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.87, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {108, 27, 112, 27, 171, 27, 124, 27, 123}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx\)

\(\Big \downarrow \) 108

\(\displaystyle 2 \int -3 b^2 c \sqrt {x} \sqrt {a+b x} \sqrt {a c-b c x}dx-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -6 b^2 c \int \sqrt {x} \sqrt {a+b x} \sqrt {a c-b c x}dx-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 112

\(\displaystyle -6 b^2 c \left (\frac {2 \int \frac {a c (a+3 b x) \sqrt {a c-b c x}}{2 \sqrt {x} \sqrt {a+b x}}dx}{5 b c}-\frac {2 \sqrt {x} \sqrt {a+b x} (a c-b c x)^{3/2}}{5 b c}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -6 b^2 c \left (\frac {a \int \frac {(a+3 b x) \sqrt {a c-b c x}}{\sqrt {x} \sqrt {a+b x}}dx}{5 b}-\frac {2 \sqrt {x} \sqrt {a+b x} (a c-b c x)^{3/2}}{5 b c}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 171

\(\displaystyle -6 b^2 c \left (\frac {a \left (\frac {2 \int \frac {3 a b^2 c \sqrt {x}}{\sqrt {a+b x} \sqrt {a c-b c x}}dx}{3 b}+2 \sqrt {x} \sqrt {a+b x} \sqrt {a c-b c x}\right )}{5 b}-\frac {2 \sqrt {x} \sqrt {a+b x} (a c-b c x)^{3/2}}{5 b c}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -6 b^2 c \left (\frac {a \left (2 a b c \int \frac {\sqrt {x}}{\sqrt {a+b x} \sqrt {a c-b c x}}dx+2 \sqrt {x} \sqrt {a+b x} \sqrt {a c-b c x}\right )}{5 b}-\frac {2 \sqrt {x} \sqrt {a+b x} (a c-b c x)^{3/2}}{5 b c}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 124

\(\displaystyle -6 b^2 c \left (\frac {a \left (\frac {\sqrt {2} a b c \sqrt {x} \sqrt {\frac {a-b x}{a}} \int \frac {\sqrt {2} \sqrt {-\frac {b x}{a}}}{\sqrt {a+b x} \sqrt {1-\frac {b x}{a}}}dx}{\sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}+2 \sqrt {x} \sqrt {a+b x} \sqrt {a c-b c x}\right )}{5 b}-\frac {2 \sqrt {x} \sqrt {a+b x} (a c-b c x)^{3/2}}{5 b c}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -6 b^2 c \left (\frac {a \left (\frac {2 a b c \sqrt {x} \sqrt {\frac {a-b x}{a}} \int \frac {\sqrt {-\frac {b x}{a}}}{\sqrt {a+b x} \sqrt {1-\frac {b x}{a}}}dx}{\sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}+2 \sqrt {x} \sqrt {a+b x} \sqrt {a c-b c x}\right )}{5 b}-\frac {2 \sqrt {x} \sqrt {a+b x} (a c-b c x)^{3/2}}{5 b c}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

\(\Big \downarrow \) 123

\(\displaystyle -6 b^2 c \left (\frac {a \left (\frac {4 a^{3/2} c \sqrt {x} \sqrt {\frac {a-b x}{a}} E\left (\left .\arcsin \left (\frac {\sqrt {a+b x}}{\sqrt {2} \sqrt {a}}\right )\right |2\right )}{\sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}+2 \sqrt {x} \sqrt {a+b x} \sqrt {a c-b c x}\right )}{5 b}-\frac {2 \sqrt {x} \sqrt {a+b x} (a c-b c x)^{3/2}}{5 b c}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{\sqrt {x}}\)

Input:

Int[((a + b*x)^(3/2)*(a*c - b*c*x)^(3/2))/x^(3/2),x]
 

Output:

(-2*(a + b*x)^(3/2)*(a*c - b*c*x)^(3/2))/Sqrt[x] - 6*b^2*c*((-2*Sqrt[x]*Sq 
rt[a + b*x]*(a*c - b*c*x)^(3/2))/(5*b*c) + (a*(2*Sqrt[x]*Sqrt[a + b*x]*Sqr 
t[a*c - b*c*x] + (4*a^(3/2)*c*Sqrt[x]*Sqrt[(a - b*x)/a]*EllipticE[ArcSin[S 
qrt[a + b*x]/(Sqrt[2]*Sqrt[a])], 2])/(Sqrt[-((b*x)/a)]*Sqrt[a*c - b*c*x])) 
)/(5*b))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 108
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))) 
, x] - Simp[1/(b*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f* 
x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2 
*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 112
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^m*(c + d*x)^n*((e + f*x)^(p + 1)/(f*(m + n + 
p + 1))), x] - Simp[1/(f*(m + n + p + 1))   Int[(a + b*x)^(m - 1)*(c + d*x) 
^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a 
*f) + b*n*(d*e - c*f))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && 
GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (IntegersQ[2*m, 2*n, 2*p 
] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 124
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d 
*x]*Sqrt[b*((e + f*x)/(b*e - a*f))]))   Int[Sqrt[b*(e/(b*e - a*f)) + b*f*(x 
/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && Gt 
Q[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 
Maple [A] (verified)

Time = 0.67 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.82

method result size
default \(\frac {2 \sqrt {b x +a}\, \sqrt {c \left (-b x +a \right )}\, c \left (12 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{4}-6 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{4}+b^{4} x^{4}+4 a^{2} b^{2} x^{2}-5 a^{4}\right )}{5 \sqrt {x}\, \left (-b^{2} x^{2}+a^{2}\right )}\) \(176\)
risch \(-\frac {2 \left (-b x +a \right ) \sqrt {b x +a}\, \left (b^{2} x^{2}+5 a^{2}\right ) c^{2}}{5 \sqrt {x}\, \sqrt {-c \left (b x -a \right )}}-\frac {12 a^{3} b \sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {2 \left (x -\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {b x}{a}}\, \left (-\frac {2 a \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {a \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) \sqrt {-x \left (b x +a \right ) c \left (b x -a \right )}\, c^{2}}{5 \sqrt {-b^{2} c \,x^{3}+a^{2} c x}\, \sqrt {x}\, \sqrt {b x +a}\, \sqrt {-c \left (b x -a \right )}}\) \(206\)
elliptic \(\frac {\sqrt {b x +a}\, \sqrt {c \left (-b x +a \right )}\, \sqrt {c x \left (-b^{2} x^{2}+a^{2}\right )}\, \left (-\frac {2 \left (-b^{2} c \,x^{2}+a^{2} c \right ) a^{2} c}{\sqrt {x \left (-b^{2} c \,x^{2}+a^{2} c \right )}}-\frac {2 b^{2} c x \sqrt {-b^{2} c \,x^{3}+a^{2} c x}}{5}-\frac {12 a^{3} b \,c^{2} \sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {2 \left (x -\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {b x}{a}}\, \left (-\frac {2 a \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {a \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{5 \sqrt {-b^{2} c \,x^{3}+a^{2} c x}}\right )}{\sqrt {x}\, c \left (-b^{2} x^{2}+a^{2}\right )}\) \(240\)

Input:

int((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/5*(b*x+a)^(1/2)*(c*(-b*x+a))^(1/2)*c*(12*((b*x+a)/a)^(1/2)*2^(1/2)*((-b* 
x+a)/a)^(1/2)*(-b*x/a)^(1/2)*EllipticE(((b*x+a)/a)^(1/2),1/2*2^(1/2))*a^4- 
6*((b*x+a)/a)^(1/2)*2^(1/2)*((-b*x+a)/a)^(1/2)*(-b*x/a)^(1/2)*EllipticF((( 
b*x+a)/a)^(1/2),1/2*2^(1/2))*a^4+b^4*x^4+4*a^2*b^2*x^2-5*a^4)/x^(1/2)/(-b^ 
2*x^2+a^2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.37 \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=-\frac {2 \, {\left (12 \, \sqrt {-b^{2} c} a^{2} c x {\rm weierstrassZeta}\left (\frac {4 \, a^{2}}{b^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4 \, a^{2}}{b^{2}}, 0, x\right )\right ) + {\left (b^{2} c x^{2} + 5 \, a^{2} c\right )} \sqrt {-b c x + a c} \sqrt {b x + a} \sqrt {x}\right )}}{5 \, x} \] Input:

integrate((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(3/2),x, algorithm="fricas")
 

Output:

-2/5*(12*sqrt(-b^2*c)*a^2*c*x*weierstrassZeta(4*a^2/b^2, 0, weierstrassPIn 
verse(4*a^2/b^2, 0, x)) + (b^2*c*x^2 + 5*a^2*c)*sqrt(-b*c*x + a*c)*sqrt(b* 
x + a)*sqrt(x))/x
 

Sympy [F]

\[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=\int \frac {\left (- c \left (- a + b x\right )\right )^{\frac {3}{2}} \left (a + b x\right )^{\frac {3}{2}}}{x^{\frac {3}{2}}}\, dx \] Input:

integrate((b*x+a)**(3/2)*(-b*c*x+a*c)**(3/2)/x**(3/2),x)
 

Output:

Integral((-c*(-a + b*x))**(3/2)*(a + b*x)**(3/2)/x**(3/2), x)
 

Maxima [F]

\[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=\int { \frac {{\left (-b c x + a c\right )}^{\frac {3}{2}} {\left (b x + a\right )}^{\frac {3}{2}}}{x^{\frac {3}{2}}} \,d x } \] Input:

integrate((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(3/2),x, algorithm="maxima")
 

Output:

integrate((-b*c*x + a*c)^(3/2)*(b*x + a)^(3/2)/x^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=\int { \frac {{\left (-b c x + a c\right )}^{\frac {3}{2}} {\left (b x + a\right )}^{\frac {3}{2}}}{x^{\frac {3}{2}}} \,d x } \] Input:

integrate((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(3/2),x, algorithm="giac")
 

Output:

integrate((-b*c*x + a*c)^(3/2)*(b*x + a)^(3/2)/x^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=\int \frac {{\left (a\,c-b\,c\,x\right )}^{3/2}\,{\left (a+b\,x\right )}^{3/2}}{x^{3/2}} \,d x \] Input:

int(((a*c - b*c*x)^(3/2)*(a + b*x)^(3/2))/x^(3/2),x)
 

Output:

int(((a*c - b*c*x)^(3/2)*(a + b*x)^(3/2))/x^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{3/2}} \, dx=\frac {2 \sqrt {c}\, c \left (7 \sqrt {b x +a}\, \sqrt {-b x +a}\, a^{2}-\sqrt {b x +a}\, \sqrt {-b x +a}\, b^{2} x^{2}+6 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {b x +a}\, \sqrt {-b x +a}}{-b^{2} x^{4}+a^{2} x^{2}}d x \right ) a^{4}\right )}{5 \sqrt {x}} \] Input:

int((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(3/2),x)
 

Output:

(2*sqrt(c)*c*(7*sqrt(a + b*x)*sqrt(a - b*x)*a**2 - sqrt(a + b*x)*sqrt(a - 
b*x)*b**2*x**2 + 6*sqrt(x)*int((sqrt(x)*sqrt(a + b*x)*sqrt(a - b*x))/(a**2 
*x**2 - b**2*x**4),x)*a**4))/(5*sqrt(x))