\(\int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx\) [160]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 255 \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=\frac {4 b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}{15 x^{5/2}}-\frac {8 b^4 c \sqrt {a+b x} \sqrt {a c-b c x}}{15 a^2 \sqrt {x}}-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}-\frac {8 b^{9/2} c^2 \sqrt {1-\frac {b^2 x^2}{a^2}} E\left (\left .\arcsin \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )\right |-1\right )}{15 \sqrt {a} \sqrt {a+b x} \sqrt {a c-b c x}}+\frac {8 b^{9/2} c^2 \sqrt {1-\frac {b^2 x^2}{a^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right ),-1\right )}{15 \sqrt {a} \sqrt {a+b x} \sqrt {a c-b c x}} \] Output:

4/15*b^2*c*(b*x+a)^(1/2)*(-b*c*x+a*c)^(1/2)/x^(5/2)-8/15*b^4*c*(b*x+a)^(1/ 
2)*(-b*c*x+a*c)^(1/2)/a^2/x^(1/2)-2/9*(b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^( 
9/2)-8/15*b^(9/2)*c^2*(1-b^2*x^2/a^2)^(1/2)*EllipticE(b^(1/2)*x^(1/2)/a^(1 
/2),I)/a^(1/2)/(b*x+a)^(1/2)/(-b*c*x+a*c)^(1/2)+8/15*b^(9/2)*c^2*(1-b^2*x^ 
2/a^2)^(1/2)*EllipticF(b^(1/2)*x^(1/2)/a^(1/2),I)/a^(1/2)/(b*x+a)^(1/2)/(- 
b*c*x+a*c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.86 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.28 \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=-\frac {2 a^2 c \sqrt {c (a-b x)} \sqrt {a+b x} \operatorname {Hypergeometric2F1}\left (-\frac {9}{4},-\frac {3}{2},-\frac {5}{4},\frac {b^2 x^2}{a^2}\right )}{9 x^{9/2} \sqrt {1-\frac {b^2 x^2}{a^2}}} \] Input:

Integrate[((a + b*x)^(3/2)*(a*c - b*c*x)^(3/2))/x^(11/2),x]
 

Output:

(-2*a^2*c*Sqrt[c*(a - b*x)]*Sqrt[a + b*x]*Hypergeometric2F1[-9/4, -3/2, -5 
/4, (b^2*x^2)/a^2])/(9*x^(9/2)*Sqrt[1 - (b^2*x^2)/a^2])
 

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 190, normalized size of antiderivative = 0.75, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {108, 27, 108, 25, 27, 115, 27, 124, 27, 123}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx\)

\(\Big \downarrow \) 108

\(\displaystyle \frac {2}{9} \int -\frac {3 b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}{x^{7/2}}dx-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2}{3} b^2 c \int \frac {\sqrt {a+b x} \sqrt {a c-b c x}}{x^{7/2}}dx-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 108

\(\displaystyle -\frac {2}{3} b^2 c \left (\frac {2}{5} \int -\frac {b^2 c}{x^{3/2} \sqrt {a+b x} \sqrt {a c-b c x}}dx-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2}{3} b^2 c \left (-\frac {2}{5} \int \frac {b^2 c}{x^{3/2} \sqrt {a+b x} \sqrt {a c-b c x}}dx-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2}{3} b^2 c \left (-\frac {2}{5} b^2 c \int \frac {1}{x^{3/2} \sqrt {a+b x} \sqrt {a c-b c x}}dx-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 115

\(\displaystyle -\frac {2}{3} b^2 c \left (-\frac {2}{5} b^2 c \left (-\frac {2 \int \frac {b^2 c \sqrt {x}}{2 \sqrt {a+b x} \sqrt {a c-b c x}}dx}{a^2 c}-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{a^2 c \sqrt {x}}\right )-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2}{3} b^2 c \left (-\frac {2}{5} b^2 c \left (-\frac {b^2 \int \frac {\sqrt {x}}{\sqrt {a+b x} \sqrt {a c-b c x}}dx}{a^2}-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{a^2 c \sqrt {x}}\right )-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 124

\(\displaystyle -\frac {2}{3} b^2 c \left (-\frac {2}{5} b^2 c \left (-\frac {b^2 \sqrt {x} \sqrt {\frac {a-b x}{a}} \int \frac {\sqrt {2} \sqrt {-\frac {b x}{a}}}{\sqrt {a+b x} \sqrt {1-\frac {b x}{a}}}dx}{\sqrt {2} a^2 \sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{a^2 c \sqrt {x}}\right )-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2}{3} b^2 c \left (-\frac {2}{5} b^2 c \left (-\frac {b^2 \sqrt {x} \sqrt {\frac {a-b x}{a}} \int \frac {\sqrt {-\frac {b x}{a}}}{\sqrt {a+b x} \sqrt {1-\frac {b x}{a}}}dx}{a^2 \sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{a^2 c \sqrt {x}}\right )-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle -\frac {2}{3} b^2 c \left (-\frac {2}{5} b^2 c \left (-\frac {2 b \sqrt {x} \sqrt {\frac {a-b x}{a}} E\left (\left .\arcsin \left (\frac {\sqrt {a+b x}}{\sqrt {2} \sqrt {a}}\right )\right |2\right )}{a^{3/2} \sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{a^2 c \sqrt {x}}\right )-\frac {2 \sqrt {a+b x} \sqrt {a c-b c x}}{5 x^{5/2}}\right )-\frac {2 (a+b x)^{3/2} (a c-b c x)^{3/2}}{9 x^{9/2}}\)

Input:

Int[((a + b*x)^(3/2)*(a*c - b*c*x)^(3/2))/x^(11/2),x]
 

Output:

(-2*(a + b*x)^(3/2)*(a*c - b*c*x)^(3/2))/(9*x^(9/2)) - (2*b^2*c*((-2*Sqrt[ 
a + b*x]*Sqrt[a*c - b*c*x])/(5*x^(5/2)) - (2*b^2*c*((-2*Sqrt[a + b*x]*Sqrt 
[a*c - b*c*x])/(a^2*c*Sqrt[x]) - (2*b*Sqrt[x]*Sqrt[(a - b*x)/a]*EllipticE[ 
ArcSin[Sqrt[a + b*x]/(Sqrt[2]*Sqrt[a])], 2])/(a^(3/2)*Sqrt[-((b*x)/a)]*Sqr 
t[a*c - b*c*x])))/5))/3
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 108
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))) 
, x] - Simp[1/(b*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f* 
x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2 
*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 115
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2 
*n, 2*p]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 124
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d 
*x]*Sqrt[b*((e + f*x)/(b*e - a*f))]))   Int[Sqrt[b*(e/(b*e - a*f)) + b*f*(x 
/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && Gt 
Q[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]
 
Maple [A] (verified)

Time = 1.38 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.80

method result size
default \(\frac {2 \sqrt {b x +a}\, \sqrt {c \left (-b x +a \right )}\, c \left (12 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{2} b^{4} x^{4}-6 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{2} b^{4} x^{4}+12 b^{6} x^{6}-23 a^{2} x^{4} b^{4}+16 a^{4} x^{2} b^{2}-5 a^{6}\right )}{45 x^{\frac {9}{2}} a^{2} \left (-b^{2} x^{2}+a^{2}\right )}\) \(203\)
risch \(-\frac {2 \left (-b x +a \right ) \sqrt {b x +a}\, \left (12 b^{4} x^{4}-11 a^{2} b^{2} x^{2}+5 a^{4}\right ) c^{2}}{45 x^{\frac {9}{2}} a^{2} \sqrt {-c \left (b x -a \right )}}-\frac {4 b^{5} \sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {2 \left (x -\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {b x}{a}}\, \left (-\frac {2 a \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {a \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) \sqrt {-x \left (b x +a \right ) c \left (b x -a \right )}\, c^{2}}{15 a \sqrt {-b^{2} c \,x^{3}+a^{2} c x}\, \sqrt {x}\, \sqrt {b x +a}\, \sqrt {-c \left (b x -a \right )}}\) \(223\)
elliptic \(\frac {\sqrt {b x +a}\, \sqrt {c \left (-b x +a \right )}\, \sqrt {c x \left (-b^{2} x^{2}+a^{2}\right )}\, \left (-\frac {2 a^{2} c \sqrt {-b^{2} c \,x^{3}+a^{2} c x}}{9 x^{5}}+\frac {22 b^{2} c \sqrt {-b^{2} c \,x^{3}+a^{2} c x}}{45 x^{3}}-\frac {8 \left (-b^{2} c \,x^{2}+a^{2} c \right ) b^{4} c}{15 a^{2} \sqrt {x \left (-b^{2} c \,x^{2}+a^{2} c \right )}}-\frac {4 b^{5} c^{2} \sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {2 \left (x -\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {b x}{a}}\, \left (-\frac {2 a \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {a \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{15 a \sqrt {-b^{2} c \,x^{3}+a^{2} c x}}\right )}{\sqrt {x}\, c \left (-b^{2} x^{2}+a^{2}\right )}\) \(274\)

Input:

int((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(11/2),x,method=_RETURNVERBOSE)
 

Output:

2/45*(b*x+a)^(1/2)*(c*(-b*x+a))^(1/2)*c*(12*((b*x+a)/a)^(1/2)*2^(1/2)*((-b 
*x+a)/a)^(1/2)*(-b*x/a)^(1/2)*EllipticE(((b*x+a)/a)^(1/2),1/2*2^(1/2))*a^2 
*b^4*x^4-6*((b*x+a)/a)^(1/2)*2^(1/2)*((-b*x+a)/a)^(1/2)*(-b*x/a)^(1/2)*Ell 
ipticF(((b*x+a)/a)^(1/2),1/2*2^(1/2))*a^2*b^4*x^4+12*b^6*x^6-23*a^2*x^4*b^ 
4+16*a^4*x^2*b^2-5*a^6)/x^(9/2)/a^2/(-b^2*x^2+a^2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.38 \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=-\frac {2 \, {\left (12 \, \sqrt {-b^{2} c} b^{4} c x^{5} {\rm weierstrassZeta}\left (\frac {4 \, a^{2}}{b^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4 \, a^{2}}{b^{2}}, 0, x\right )\right ) + {\left (12 \, b^{4} c x^{4} - 11 \, a^{2} b^{2} c x^{2} + 5 \, a^{4} c\right )} \sqrt {-b c x + a c} \sqrt {b x + a} \sqrt {x}\right )}}{45 \, a^{2} x^{5}} \] Input:

integrate((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(11/2),x, algorithm="fricas")
 

Output:

-2/45*(12*sqrt(-b^2*c)*b^4*c*x^5*weierstrassZeta(4*a^2/b^2, 0, weierstrass 
PInverse(4*a^2/b^2, 0, x)) + (12*b^4*c*x^4 - 11*a^2*b^2*c*x^2 + 5*a^4*c)*s 
qrt(-b*c*x + a*c)*sqrt(b*x + a)*sqrt(x))/(a^2*x^5)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=\text {Timed out} \] Input:

integrate((b*x+a)**(3/2)*(-b*c*x+a*c)**(3/2)/x**(11/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=\int { \frac {{\left (-b c x + a c\right )}^{\frac {3}{2}} {\left (b x + a\right )}^{\frac {3}{2}}}{x^{\frac {11}{2}}} \,d x } \] Input:

integrate((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(11/2),x, algorithm="maxima")
 

Output:

integrate((-b*c*x + a*c)^(3/2)*(b*x + a)^(3/2)/x^(11/2), x)
 

Giac [F]

\[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=\int { \frac {{\left (-b c x + a c\right )}^{\frac {3}{2}} {\left (b x + a\right )}^{\frac {3}{2}}}{x^{\frac {11}{2}}} \,d x } \] Input:

integrate((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(11/2),x, algorithm="giac")
 

Output:

integrate((-b*c*x + a*c)^(3/2)*(b*x + a)^(3/2)/x^(11/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=\int \frac {{\left (a\,c-b\,c\,x\right )}^{3/2}\,{\left (a+b\,x\right )}^{3/2}}{x^{11/2}} \,d x \] Input:

int(((a*c - b*c*x)^(3/2)*(a + b*x)^(3/2))/x^(11/2),x)
 

Output:

int(((a*c - b*c*x)^(3/2)*(a + b*x)^(3/2))/x^(11/2), x)
 

Reduce [F]

\[ \int \frac {(a+b x)^{3/2} (a c-b c x)^{3/2}}{x^{11/2}} \, dx=\int \frac {\left (b x +a \right )^{\frac {3}{2}} \left (-b c x +a c \right )^{\frac {3}{2}}}{x^{\frac {11}{2}}}d x \] Input:

int((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(11/2),x)
 

Output:

int((b*x+a)^(3/2)*(-b*c*x+a*c)^(3/2)/x^(11/2),x)