\(\int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx\) [194]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 225 \[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 x^{3/2}}{6 b^4 c^2 \sqrt {a+b x} \sqrt {a c-b c x}}+\frac {7 a^{3/2} \sqrt {1-\frac {b^2 x^2}{a^2}} E\left (\left .\arcsin \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )\right |-1\right )}{2 b^{11/2} c^2 \sqrt {a+b x} \sqrt {a c-b c x}}-\frac {7 a^{3/2} \sqrt {1-\frac {b^2 x^2}{a^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right ),-1\right )}{2 b^{11/2} c^2 \sqrt {a+b x} \sqrt {a c-b c x}} \] Output:

1/3*x^(7/2)/b^2/c/(b*x+a)^(3/2)/(-b*c*x+a*c)^(3/2)-7/6*x^(3/2)/b^4/c^2/(b* 
x+a)^(1/2)/(-b*c*x+a*c)^(1/2)+7/2*a^(3/2)*(1-b^2*x^2/a^2)^(1/2)*EllipticE( 
b^(1/2)*x^(1/2)/a^(1/2),I)/b^(11/2)/c^2/(b*x+a)^(1/2)/(-b*c*x+a*c)^(1/2)-7 
/2*a^(3/2)*(1-b^2*x^2/a^2)^(1/2)*EllipticF(b^(1/2)*x^(1/2)/a^(1/2),I)/b^(1 
1/2)/c^2/(b*x+a)^(1/2)/(-b*c*x+a*c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.06 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.52 \[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\frac {2 x^{3/2} \left (-7 a^2+3 b^2 x^2+7 \left (a^2-b^2 x^2\right ) \sqrt {1-\frac {b^2 x^2}{a^2}} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{2},\frac {7}{4},\frac {b^2 x^2}{a^2}\right )\right )}{3 b^4 c^2 \sqrt {c (a-b x)} \sqrt {a+b x} \left (-a^2+b^2 x^2\right )} \] Input:

Integrate[x^(9/2)/((a + b*x)^(5/2)*(a*c - b*c*x)^(5/2)),x]
 

Output:

(2*x^(3/2)*(-7*a^2 + 3*b^2*x^2 + 7*(a^2 - b^2*x^2)*Sqrt[1 - (b^2*x^2)/a^2] 
*Hypergeometric2F1[3/4, 5/2, 7/4, (b^2*x^2)/a^2]))/(3*b^4*c^2*Sqrt[c*(a - 
b*x)]*Sqrt[a + b*x]*(-a^2 + b^2*x^2))
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.72, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {109, 27, 35, 109, 27, 35, 124, 27, 123}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {\int \frac {7 a c x^{5/2} (a-b x)}{2 (a+b x)^{3/2} (a c-b c x)^{5/2}}dx}{3 a b^2 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \int \frac {x^{5/2} (a-b x)}{(a+b x)^{3/2} (a c-b c x)^{5/2}}dx}{6 b^2}\)

\(\Big \downarrow \) 35

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \int \frac {x^{5/2}}{(a+b x)^{3/2} (a c-b c x)^{3/2}}dx}{6 b^2 c}\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \left (\frac {x^{3/2}}{b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}-\frac {\int \frac {3 a c \sqrt {x} (a-b x)}{2 \sqrt {a+b x} (a c-b c x)^{3/2}}dx}{a b^2 c}\right )}{6 b^2 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \left (\frac {x^{3/2}}{b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}-\frac {3 \int \frac {\sqrt {x} (a-b x)}{\sqrt {a+b x} (a c-b c x)^{3/2}}dx}{2 b^2}\right )}{6 b^2 c}\)

\(\Big \downarrow \) 35

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \left (\frac {x^{3/2}}{b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}-\frac {3 \int \frac {\sqrt {x}}{\sqrt {a+b x} \sqrt {a c-b c x}}dx}{2 b^2 c}\right )}{6 b^2 c}\)

\(\Big \downarrow \) 124

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \left (\frac {x^{3/2}}{b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}-\frac {3 \sqrt {x} \sqrt {\frac {a-b x}{a}} \int \frac {\sqrt {2} \sqrt {-\frac {b x}{a}}}{\sqrt {a+b x} \sqrt {1-\frac {b x}{a}}}dx}{2 \sqrt {2} b^2 c \sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}\right )}{6 b^2 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \left (\frac {x^{3/2}}{b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}-\frac {3 \sqrt {x} \sqrt {\frac {a-b x}{a}} \int \frac {\sqrt {-\frac {b x}{a}}}{\sqrt {a+b x} \sqrt {1-\frac {b x}{a}}}dx}{2 b^2 c \sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}\right )}{6 b^2 c}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {x^{7/2}}{3 b^2 c (a+b x)^{3/2} (a c-b c x)^{3/2}}-\frac {7 \left (\frac {x^{3/2}}{b^2 c \sqrt {a+b x} \sqrt {a c-b c x}}-\frac {3 \sqrt {a} \sqrt {x} \sqrt {\frac {a-b x}{a}} E\left (\left .\arcsin \left (\frac {\sqrt {a+b x}}{\sqrt {2} \sqrt {a}}\right )\right |2\right )}{b^3 c \sqrt {-\frac {b x}{a}} \sqrt {a c-b c x}}\right )}{6 b^2 c}\)

Input:

Int[x^(9/2)/((a + b*x)^(5/2)*(a*c - b*c*x)^(5/2)),x]
 

Output:

x^(7/2)/(3*b^2*c*(a + b*x)^(3/2)*(a*c - b*c*x)^(3/2)) - (7*(x^(3/2)/(b^2*c 
*Sqrt[a + b*x]*Sqrt[a*c - b*c*x]) - (3*Sqrt[a]*Sqrt[x]*Sqrt[(a - b*x)/a]*E 
llipticE[ArcSin[Sqrt[a + b*x]/(Sqrt[2]*Sqrt[a])], 2])/(b^3*c*Sqrt[-((b*x)/ 
a)]*Sqrt[a*c - b*c*x])))/(6*b^2*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 35
Int[(u_.)*((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*x)^(m + n), x], x] /; FreeQ[{a, b, c, d, m, n} 
, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] &&  !(IntegerQ[n] && SimplerQ[a + 
b*x, c + d*x])
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 124
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d 
*x]*Sqrt[b*((e + f*x)/(b*e - a*f))]))   Int[Sqrt[b*(e/(b*e - a*f)) + b*f*(x 
/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && Gt 
Q[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]
 
Maple [A] (verified)

Time = 2.34 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.04

method result size
elliptic \(\frac {\sqrt {c x \left (-b^{2} x^{2}+a^{2}\right )}\, \left (\frac {a^{2} x \sqrt {-b^{2} c \,x^{3}+a^{2} c x}}{3 c^{3} b^{8} \left (x^{2}-\frac {a^{2}}{b^{2}}\right )^{2}}-\frac {3 x^{2}}{2 b^{4} c^{2} \sqrt {-\left (x^{2}-\frac {a^{2}}{b^{2}}\right ) b^{2} c x}}+\frac {7 a \sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {2 \left (x -\frac {a}{b}\right ) b}{a}}\, \sqrt {-\frac {b x}{a}}\, \left (-\frac {2 a \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {a \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {a}{b}\right ) b}{a}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{4 b^{5} c^{2} \sqrt {-b^{2} c \,x^{3}+a^{2} c x}}\right )}{\sqrt {x}\, \sqrt {b x +a}\, \sqrt {c \left (-b x +a \right )}}\) \(234\)
default \(\frac {\left (-21 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{2} b^{2} x^{2}+42 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{2} b^{2} x^{2}+21 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticF}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{4}-42 \sqrt {\frac {b x +a}{a}}\, \sqrt {2}\, \sqrt {\frac {-b x +a}{a}}\, \sqrt {-\frac {b x}{a}}\, \operatorname {EllipticE}\left (\sqrt {\frac {b x +a}{a}}, \frac {\sqrt {2}}{2}\right ) a^{4}+18 b^{4} x^{4}-14 a^{2} b^{2} x^{2}\right ) \sqrt {c \left (-b x +a \right )}}{12 c^{3} \sqrt {x}\, \left (-b x +a \right )^{2} b^{6} \left (b x +a \right )^{\frac {3}{2}}}\) \(297\)

Input:

int(x^(9/2)/(b*x+a)^(5/2)/(-b*c*x+a*c)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

(c*x*(-b^2*x^2+a^2))^(1/2)/x^(1/2)/(b*x+a)^(1/2)/(c*(-b*x+a))^(1/2)*(1/3*a 
^2/c^3/b^8*x*(-b^2*c*x^3+a^2*c*x)^(1/2)/(x^2-a^2/b^2)^2-3/2/b^4/c^2*x^2/(- 
(x^2-a^2/b^2)*b^2*c*x)^(1/2)+7/4/b^5/c^2*a*((x+a/b)/a*b)^(1/2)*(-2*(x-a/b) 
/a*b)^(1/2)*(-b*x/a)^(1/2)/(-b^2*c*x^3+a^2*c*x)^(1/2)*(-2*a/b*EllipticE((( 
x+a/b)/a*b)^(1/2),1/2*2^(1/2))+a/b*EllipticF(((x+a/b)/a*b)^(1/2),1/2*2^(1/ 
2))))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.59 \[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\frac {{\left (9 \, b^{4} x^{3} - 7 \, a^{2} b^{2} x\right )} \sqrt {-b c x + a c} \sqrt {b x + a} \sqrt {x} + 21 \, {\left (b^{4} x^{4} - 2 \, a^{2} b^{2} x^{2} + a^{4}\right )} \sqrt {-b^{2} c} {\rm weierstrassZeta}\left (\frac {4 \, a^{2}}{b^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {4 \, a^{2}}{b^{2}}, 0, x\right )\right )}{6 \, {\left (b^{10} c^{3} x^{4} - 2 \, a^{2} b^{8} c^{3} x^{2} + a^{4} b^{6} c^{3}\right )}} \] Input:

integrate(x^(9/2)/(b*x+a)^(5/2)/(-b*c*x+a*c)^(5/2),x, algorithm="fricas")
 

Output:

1/6*((9*b^4*x^3 - 7*a^2*b^2*x)*sqrt(-b*c*x + a*c)*sqrt(b*x + a)*sqrt(x) + 
21*(b^4*x^4 - 2*a^2*b^2*x^2 + a^4)*sqrt(-b^2*c)*weierstrassZeta(4*a^2/b^2, 
 0, weierstrassPInverse(4*a^2/b^2, 0, x)))/(b^10*c^3*x^4 - 2*a^2*b^8*c^3*x 
^2 + a^4*b^6*c^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(x**(9/2)/(b*x+a)**(5/2)/(-b*c*x+a*c)**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\int { \frac {x^{\frac {9}{2}}}{{\left (-b c x + a c\right )}^{\frac {5}{2}} {\left (b x + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(x^(9/2)/(b*x+a)^(5/2)/(-b*c*x+a*c)^(5/2),x, algorithm="maxima")
 

Output:

integrate(x^(9/2)/((-b*c*x + a*c)^(5/2)*(b*x + a)^(5/2)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(x^(9/2)/(b*x+a)^(5/2)/(-b*c*x+a*c)^(5/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\int \frac {x^{9/2}}{{\left (a\,c-b\,c\,x\right )}^{5/2}\,{\left (a+b\,x\right )}^{5/2}} \,d x \] Input:

int(x^(9/2)/((a*c - b*c*x)^(5/2)*(a + b*x)^(5/2)),x)
 

Output:

int(x^(9/2)/((a*c - b*c*x)^(5/2)*(a + b*x)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {x^{9/2}}{(a+b x)^{5/2} (a c-b c x)^{5/2}} \, dx=\int \frac {x^{\frac {9}{2}}}{\left (b x +a \right )^{\frac {5}{2}} \left (-b c x +a c \right )^{\frac {5}{2}}}d x \] Input:

int(x^(9/2)/(b*x+a)^(5/2)/(-b*c*x+a*c)^(5/2),x)
 

Output:

int(x^(9/2)/(b*x+a)^(5/2)/(-b*c*x+a*c)^(5/2),x)