\(\int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx\) [299]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 86 \[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=\frac {(e x)^{1+m} \operatorname {Hypergeometric2F1}\left (3,\frac {1+m}{2},\frac {3+m}{2},a^2 x^2\right )}{8 e (1+m)}+\frac {a (e x)^{2+m} \operatorname {Hypergeometric2F1}\left (3,\frac {2+m}{2},\frac {4+m}{2},a^2 x^2\right )}{8 e^2 (2+m)} \] Output:

1/8*(e*x)^(1+m)*hypergeom([3, 1/2+1/2*m],[3/2+1/2*m],a^2*x^2)/e/(1+m)+1/8* 
a*(e*x)^(2+m)*hypergeom([3, 1+1/2*m],[2+1/2*m],a^2*x^2)/e^2/(2+m)
 

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.90 \[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=\frac {x (e x)^m \left (a (1+m) x \operatorname {Hypergeometric2F1}\left (3,1+\frac {m}{2},2+\frac {m}{2},a^2 x^2\right )+(2+m) \operatorname {Hypergeometric2F1}\left (3,\frac {1+m}{2},\frac {3+m}{2},a^2 x^2\right )\right )}{8 (1+m) (2+m)} \] Input:

Integrate[(e*x)^m/((2 - 2*a*x)^3*(1 + a*x)^2),x]
 

Output:

(x*(e*x)^m*(a*(1 + m)*x*Hypergeometric2F1[3, 1 + m/2, 2 + m/2, a^2*x^2] + 
(2 + m)*Hypergeometric2F1[3, (1 + m)/2, (3 + m)/2, a^2*x^2]))/(8*(1 + m)*( 
2 + m))
 

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {92, 27, 82, 278}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e x)^m}{(2-2 a x)^3 (a x+1)^2} \, dx\)

\(\Big \downarrow \) 92

\(\displaystyle \int \frac {(e x)^m}{8 (1-a x)^3 (a x+1)^3}dx+\frac {a \int \frac {(e x)^{m+1}}{8 (1-a x)^3 (a x+1)^3}dx}{e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} \int \frac {(e x)^m}{(1-a x)^3 (a x+1)^3}dx+\frac {a \int \frac {(e x)^{m+1}}{(1-a x)^3 (a x+1)^3}dx}{8 e}\)

\(\Big \downarrow \) 82

\(\displaystyle \frac {1}{8} \int \frac {(e x)^m}{\left (1-a^2 x^2\right )^3}dx+\frac {a \int \frac {(e x)^{m+1}}{\left (1-a^2 x^2\right )^3}dx}{8 e}\)

\(\Big \downarrow \) 278

\(\displaystyle \frac {a (e x)^{m+2} \operatorname {Hypergeometric2F1}\left (3,\frac {m+2}{2},\frac {m+4}{2},a^2 x^2\right )}{8 e^2 (m+2)}+\frac {(e x)^{m+1} \operatorname {Hypergeometric2F1}\left (3,\frac {m+1}{2},\frac {m+3}{2},a^2 x^2\right )}{8 e (m+1)}\)

Input:

Int[(e*x)^m/((2 - 2*a*x)^3*(1 + a*x)^2),x]
 

Output:

((e*x)^(1 + m)*Hypergeometric2F1[3, (1 + m)/2, (3 + m)/2, a^2*x^2])/(8*e*( 
1 + m)) + (a*(e*x)^(2 + m)*Hypergeometric2F1[3, (2 + m)/2, (4 + m)/2, a^2* 
x^2])/(8*e^2*(2 + m))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 82
Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_) 
)^(p_.), x_] :> Int[(a*c + b*d*x^2)^m*(e + f*x)^p, x] /; FreeQ[{a, b, c, d, 
 e, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[n, m] && IntegerQ[m]
 

rule 92
Int[((f_.)*(x_))^(p_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), 
x_] :> Simp[a   Int[(a + b*x)^n*(c + d*x)^n*(f*x)^p, x], x] + Simp[b/f   In 
t[(a + b*x)^n*(c + d*x)^n*(f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, f, m, 
 n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[m - n - 1, 0] &&  !RationalQ[p] && 
!IGtQ[m, 0] && NeQ[m + n + p + 2, 0]
 

rule 278
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*(( 
c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, ( 
-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IGtQ[p, 0] && (ILtQ[p, 0 
] || GtQ[a, 0])
 
Maple [F]

\[\int \frac {\left (e x \right )^{m}}{\left (-2 a x +2\right )^{3} \left (a x +1\right )^{2}}d x\]

Input:

int((e*x)^m/(-2*a*x+2)^3/(a*x+1)^2,x)
 

Output:

int((e*x)^m/(-2*a*x+2)^3/(a*x+1)^2,x)
 

Fricas [F]

\[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=\int { -\frac {\left (e x\right )^{m}}{8 \, {\left (a x + 1\right )}^{2} {\left (a x - 1\right )}^{3}} \,d x } \] Input:

integrate((e*x)^m/(-2*a*x+2)^3/(a*x+1)^2,x, algorithm="fricas")
 

Output:

integral(-1/8*(e*x)^m/(a^5*x^5 - a^4*x^4 - 2*a^3*x^3 + 2*a^2*x^2 + a*x - 1 
), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.23 (sec) , antiderivative size = 1972, normalized size of antiderivative = 22.93 \[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=\text {Too large to display} \] Input:

integrate((e*x)**m/(-2*a*x+2)**3/(a*x+1)**2,x)
 

Output:

-2*a**3*e**m*m**3*x**3*x**m*lerchphi(1/(a*x), 1, m*exp_polar(I*pi))*gamma( 
-m)/(128*a**4*x**3*gamma(1 - m) - 128*a**3*x**2*gamma(1 - m) - 128*a**2*x* 
gamma(1 - m) + 128*a*gamma(1 - m)) + 6*a**3*e**m*m**2*x**3*x**m*lerchphi(1 
/(a*x), 1, m*exp_polar(I*pi))*gamma(-m)/(128*a**4*x**3*gamma(1 - m) - 128* 
a**3*x**2*gamma(1 - m) - 128*a**2*x*gamma(1 - m) + 128*a*gamma(1 - m)) - 2 
*a**3*e**m*m**2*x**3*x**m*lerchphi(exp_polar(I*pi)/(a*x), 1, m*exp_polar(I 
*pi))*gamma(-m)/(128*a**4*x**3*gamma(1 - m) - 128*a**3*x**2*gamma(1 - m) - 
 128*a**2*x*gamma(1 - m) + 128*a*gamma(1 - m)) - 2*a**3*e**m*m**2*x**3*x** 
m*gamma(-m)/(128*a**4*x**3*gamma(1 - m) - 128*a**3*x**2*gamma(1 - m) - 128 
*a**2*x*gamma(1 - m) + 128*a*gamma(1 - m)) - 3*a**3*e**m*m*x**3*x**m*lerch 
phi(1/(a*x), 1, m*exp_polar(I*pi))*gamma(-m)/(128*a**4*x**3*gamma(1 - m) - 
 128*a**3*x**2*gamma(1 - m) - 128*a**2*x*gamma(1 - m) + 128*a*gamma(1 - m) 
) + 3*a**3*e**m*m*x**3*x**m*lerchphi(exp_polar(I*pi)/(a*x), 1, m*exp_polar 
(I*pi))*gamma(-m)/(128*a**4*x**3*gamma(1 - m) - 128*a**3*x**2*gamma(1 - m) 
 - 128*a**2*x*gamma(1 - m) + 128*a*gamma(1 - m)) + 4*a**3*e**m*m*x**3*x**m 
*gamma(-m)/(128*a**4*x**3*gamma(1 - m) - 128*a**3*x**2*gamma(1 - m) - 128* 
a**2*x*gamma(1 - m) + 128*a*gamma(1 - m)) + 2*a**2*e**m*m**3*x**2*x**m*ler 
chphi(1/(a*x), 1, m*exp_polar(I*pi))*gamma(-m)/(128*a**4*x**3*gamma(1 - m) 
 - 128*a**3*x**2*gamma(1 - m) - 128*a**2*x*gamma(1 - m) + 128*a*gamma(1 - 
m)) - 6*a**2*e**m*m**2*x**2*x**m*lerchphi(1/(a*x), 1, m*exp_polar(I*pi)...
 

Maxima [F]

\[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=\int { -\frac {\left (e x\right )^{m}}{8 \, {\left (a x + 1\right )}^{2} {\left (a x - 1\right )}^{3}} \,d x } \] Input:

integrate((e*x)^m/(-2*a*x+2)^3/(a*x+1)^2,x, algorithm="maxima")
 

Output:

-1/8*integrate((e*x)^m/((a*x + 1)^2*(a*x - 1)^3), x)
 

Giac [F]

\[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=\int { -\frac {\left (e x\right )^{m}}{8 \, {\left (a x + 1\right )}^{2} {\left (a x - 1\right )}^{3}} \,d x } \] Input:

integrate((e*x)^m/(-2*a*x+2)^3/(a*x+1)^2,x, algorithm="giac")
 

Output:

integrate(-1/8*(e*x)^m/((a*x + 1)^2*(a*x - 1)^3), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=\int -\frac {{\left (e\,x\right )}^m}{{\left (a\,x+1\right )}^2\,{\left (2\,a\,x-2\right )}^3} \,d x \] Input:

int(-(e*x)^m/((a*x + 1)^2*(2*a*x - 2)^3),x)
 

Output:

int(-(e*x)^m/((a*x + 1)^2*(2*a*x - 2)^3), x)
 

Reduce [F]

\[ \int \frac {(e x)^m}{(2-2 a x)^3 (1+a x)^2} \, dx=-\frac {e^{m} \left (\int \frac {x^{m}}{a^{5} x^{5}-a^{4} x^{4}-2 a^{3} x^{3}+2 a^{2} x^{2}+a x -1}d x \right )}{8} \] Input:

int((e*x)^m/(-2*a*x+2)^3/(a*x+1)^2,x)
 

Output:

( - e**m*int(x**m/(a**5*x**5 - a**4*x**4 - 2*a**3*x**3 + 2*a**2*x**2 + a*x 
 - 1),x))/8