\(\int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx\) [505]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 155 \[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=-2 \arctan \left (\frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x}}\right )-\sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1+x}}{\sqrt [4]{1-x}}\right )+\sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{1+x}}{\sqrt [4]{1-x}}\right )-2 \text {arctanh}\left (\frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x}}\right )+\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{1+x}}{\sqrt [4]{1-x} \left (1+\frac {\sqrt {1+x}}{\sqrt {1-x}}\right )}\right ) \] Output:

-2*arctan((1+x)^(1/4)/(1-x)^(1/4))-arctan(1-2^(1/2)*(1+x)^(1/4)/(1-x)^(1/4 
))*2^(1/2)+arctan(1+2^(1/2)*(1+x)^(1/4)/(1-x)^(1/4))*2^(1/2)-2*arctanh((1+ 
x)^(1/4)/(1-x)^(1/4))+arctanh(2^(1/2)*(1+x)^(1/4)/(1-x)^(1/4)/(1+(1+x)^(1/ 
2)/(1-x)^(1/2)))*2^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.83 \[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=-2 \arctan \left (\frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x}}\right )+\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x^2}}{\sqrt {1-x}-\sqrt {1+x}}\right )-2 \text {arctanh}\left (\frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x}}\right )+\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{1-x^2}}{\sqrt {1-x}+\sqrt {1+x}}\right ) \] Input:

Integrate[(1 + x)^(1/4)/((1 - x)^(1/4)*x),x]
 

Output:

-2*ArcTan[(1 + x)^(1/4)/(1 - x)^(1/4)] + Sqrt[2]*ArcTan[(Sqrt[2]*(1 - x^2) 
^(1/4))/(Sqrt[1 - x] - Sqrt[1 + x])] - 2*ArcTanh[(1 + x)^(1/4)/(1 - x)^(1/ 
4)] + Sqrt[2]*ArcTanh[(Sqrt[2]*(1 - x^2)^(1/4))/(Sqrt[1 - x] + Sqrt[1 + x] 
)]
 

Rubi [A] (warning: unable to verify)

Time = 0.37 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.37, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.750, Rules used = {140, 73, 104, 756, 216, 219, 854, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x} x} \, dx\)

\(\Big \downarrow \) 140

\(\displaystyle \int \frac {1}{\sqrt [4]{1-x} (x+1)^{3/4}}dx+\int \frac {1}{\sqrt [4]{1-x} x (x+1)^{3/4}}dx\)

\(\Big \downarrow \) 73

\(\displaystyle \int \frac {1}{\sqrt [4]{1-x} x (x+1)^{3/4}}dx-4 \int \frac {\sqrt {1-x}}{(x+1)^{3/4}}d\sqrt [4]{1-x}\)

\(\Big \downarrow \) 104

\(\displaystyle 4 \int \frac {1}{\frac {x+1}{1-x}-1}d\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}-4 \int \frac {\sqrt {1-x}}{(x+1)^{3/4}}d\sqrt [4]{1-x}\)

\(\Big \downarrow \) 756

\(\displaystyle 4 \left (-\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {x+1}}{\sqrt {1-x}}}d\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}-\frac {1}{2} \int \frac {1}{\frac {\sqrt {x+1}}{\sqrt {1-x}}+1}d\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-4 \int \frac {\sqrt {1-x}}{(x+1)^{3/4}}d\sqrt [4]{1-x}\)

\(\Big \downarrow \) 216

\(\displaystyle 4 \left (-\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {x+1}}{\sqrt {1-x}}}d\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \int \frac {\sqrt {1-x}}{(x+1)^{3/4}}d\sqrt [4]{1-x}\)

\(\Big \downarrow \) 219

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \int \frac {\sqrt {1-x}}{(x+1)^{3/4}}d\sqrt [4]{1-x}\)

\(\Big \downarrow \) 854

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \int \frac {\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\)

\(\Big \downarrow \) 826

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \int \frac {\sqrt {1-x}+1}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}+\frac {1}{2} \int \frac {1}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \left (\frac {\int \frac {1}{-\sqrt {1-x}-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\sqrt {1-x}-1}d\left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\sqrt {1-x}}{2-x}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2}-\frac {2 \sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}+\frac {\int -\frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {2} \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-\frac {2 \sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}}{2 \sqrt {2}}-\frac {1}{2} \int \frac {\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}{\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1}d\frac {\sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle 4 \left (-\frac {1}{2} \arctan \left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )-\frac {1}{2} \text {arctanh}\left (\frac {\sqrt [4]{x+1}}{\sqrt [4]{1-x}}\right )\right )-4 \left (\frac {1}{2} \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\sqrt {1-x}-\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\sqrt {1-x}+\frac {\sqrt {2} \sqrt [4]{1-x}}{\sqrt [4]{x+1}}+1\right )}{2 \sqrt {2}}\right )\right )\)

Input:

Int[(1 + x)^(1/4)/((1 - x)^(1/4)*x),x]
 

Output:

4*(-1/2*ArcTan[(1 + x)^(1/4)/(1 - x)^(1/4)] - ArcTanh[(1 + x)^(1/4)/(1 - x 
)^(1/4)]/2) - 4*((-(ArcTan[1 - (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/Sqrt 
[2]) + ArcTan[1 + (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/Sqrt[2])/2 + (Log 
[1 + Sqrt[1 - x] - (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/(2*Sqrt[2]) - Lo 
g[1 + Sqrt[1 - x] + (Sqrt[2]*(1 - x)^(1/4))/(1 + x)^(1/4)]/(2*Sqrt[2]))/2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 140
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*d^(m + n)*f^p   Int[(a + b*x)^(m - 1)/(c + d*x)^m, x] 
, x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandToSum[(a + b*x 
)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x] && EqQ[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 
0] || SumSimplerQ[m, -1] ||  !(GtQ[n, 0] || SumSimplerQ[n, -1]))
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [F]

\[\int \frac {\left (1+x \right )^{\frac {1}{4}}}{\left (1-x \right )^{\frac {1}{4}} x}d x\]

Input:

int((1+x)^(1/4)/(1-x)^(1/4)/x,x)
 

Output:

int((1+x)^(1/4)/(1-x)^(1/4)/x,x)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.44 \[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=-\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}} + x - 1}{x - 1}\right ) - \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}} - x + 1}{x - 1}\right ) - \frac {1}{2} \, \sqrt {2} \log \left (\frac {\sqrt {2} {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}} + x - \sqrt {x + 1} \sqrt {-x + 1} - 1}{x - 1}\right ) + \frac {1}{2} \, \sqrt {2} \log \left (-\frac {\sqrt {2} {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}} - x + \sqrt {x + 1} \sqrt {-x + 1} + 1}{x - 1}\right ) + 2 \, \arctan \left (\frac {{\left (-x + 1\right )}^{\frac {1}{4}}}{{\left (x + 1\right )}^{\frac {1}{4}}}\right ) + \log \left (\frac {x + {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}} - 1}{x - 1}\right ) - \log \left (-\frac {x - {\left (x + 1\right )}^{\frac {1}{4}} {\left (-x + 1\right )}^{\frac {3}{4}} - 1}{x - 1}\right ) \] Input:

integrate((1+x)^(1/4)/(1-x)^(1/4)/x,x, algorithm="fricas")
 

Output:

-sqrt(2)*arctan((sqrt(2)*(x + 1)^(1/4)*(-x + 1)^(3/4) + x - 1)/(x - 1)) - 
sqrt(2)*arctan((sqrt(2)*(x + 1)^(1/4)*(-x + 1)^(3/4) - x + 1)/(x - 1)) - 1 
/2*sqrt(2)*log((sqrt(2)*(x + 1)^(1/4)*(-x + 1)^(3/4) + x - sqrt(x + 1)*sqr 
t(-x + 1) - 1)/(x - 1)) + 1/2*sqrt(2)*log(-(sqrt(2)*(x + 1)^(1/4)*(-x + 1) 
^(3/4) - x + sqrt(x + 1)*sqrt(-x + 1) + 1)/(x - 1)) + 2*arctan((-x + 1)^(1 
/4)/(x + 1)^(1/4)) + log((x + (x + 1)^(1/4)*(-x + 1)^(3/4) - 1)/(x - 1)) - 
 log(-(x - (x + 1)^(1/4)*(-x + 1)^(3/4) - 1)/(x - 1))
 

Sympy [F]

\[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=\int \frac {\sqrt [4]{x + 1}}{x \sqrt [4]{1 - x}}\, dx \] Input:

integrate((1+x)**(1/4)/(1-x)**(1/4)/x,x)
 

Output:

Integral((x + 1)**(1/4)/(x*(1 - x)**(1/4)), x)
 

Maxima [F]

\[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=\int { \frac {{\left (x + 1\right )}^{\frac {1}{4}}}{x {\left (-x + 1\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate((1+x)^(1/4)/(1-x)^(1/4)/x,x, algorithm="maxima")
 

Output:

integrate((x + 1)^(1/4)/(x*(-x + 1)^(1/4)), x)
 

Giac [F]

\[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=\int { \frac {{\left (x + 1\right )}^{\frac {1}{4}}}{x {\left (-x + 1\right )}^{\frac {1}{4}}} \,d x } \] Input:

integrate((1+x)^(1/4)/(1-x)^(1/4)/x,x, algorithm="giac")
 

Output:

integrate((x + 1)^(1/4)/(x*(-x + 1)^(1/4)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=\int \frac {{\left (x+1\right )}^{1/4}}{x\,{\left (1-x\right )}^{1/4}} \,d x \] Input:

int((x + 1)^(1/4)/(x*(1 - x)^(1/4)),x)
 

Output:

int((x + 1)^(1/4)/(x*(1 - x)^(1/4)), x)
 

Reduce [F]

\[ \int \frac {\sqrt [4]{1+x}}{\sqrt [4]{1-x} x} \, dx=\int \frac {\left (x +1\right )^{\frac {1}{4}}}{\left (1-x \right )^{\frac {1}{4}} x}d x \] Input:

int((1+x)^(1/4)/(1-x)^(1/4)/x,x)
                                                                                    
                                                                                    
 

Output:

int((x + 1)**(1/4)/(( - x + 1)**(1/4)*x),x)