\(\int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx\) [569]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 61 \[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\frac {2 (b x)^{7/2} (c+d x)^n \left (1+\frac {d x}{c}\right )^{-n} \operatorname {AppellF1}\left (\frac {7}{2},-n,1,\frac {9}{2},-\frac {d x}{c},-\frac {f x}{e}\right )}{7 b e} \] Output:

2/7*(b*x)^(7/2)*(d*x+c)^n*AppellF1(7/2,-n,1,9/2,-d*x/c,-f*x/e)/b/e/((1+d*x 
/c)^n)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(134\) vs. \(2(61)=122\).

Time = 0.59 (sec) , antiderivative size = 134, normalized size of antiderivative = 2.20 \[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\frac {2 b^2 \sqrt {b x} (c+d x)^n \left (1+\frac {d x}{c}\right )^{-n} \left (-15 e^2 \operatorname {AppellF1}\left (\frac {1}{2},-n,1,\frac {3}{2},-\frac {d x}{c},-\frac {f x}{e}\right )+15 e^2 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},-\frac {d x}{c}\right )+f x \left (-5 e \operatorname {Hypergeometric2F1}\left (\frac {3}{2},-n,\frac {5}{2},-\frac {d x}{c}\right )+3 f x \operatorname {Hypergeometric2F1}\left (\frac {5}{2},-n,\frac {7}{2},-\frac {d x}{c}\right )\right )\right )}{15 f^3} \] Input:

Integrate[((b*x)^(5/2)*(c + d*x)^n)/(e + f*x),x]
 

Output:

(2*b^2*Sqrt[b*x]*(c + d*x)^n*(-15*e^2*AppellF1[1/2, -n, 1, 3/2, -((d*x)/c) 
, -((f*x)/e)] + 15*e^2*Hypergeometric2F1[1/2, -n, 3/2, -((d*x)/c)] + f*x*( 
-5*e*Hypergeometric2F1[3/2, -n, 5/2, -((d*x)/c)] + 3*f*x*Hypergeometric2F1 
[5/2, -n, 7/2, -((d*x)/c)])))/(15*f^3*(1 + (d*x)/c)^n)
 

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {148, 27, 395, 394}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx\)

\(\Big \downarrow \) 148

\(\displaystyle \frac {2 \int \frac {b^4 x^3 (c+d x)^n}{b e+b f x}d\sqrt {b x}}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {b^3 x^3 (c+d x)^n}{b e+b f x}d\sqrt {b x}\)

\(\Big \downarrow \) 395

\(\displaystyle 2 (c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} \int \frac {b^3 x^3 \left (\frac {d x}{c}+1\right )^n}{b e+b f x}d\sqrt {b x}\)

\(\Big \downarrow \) 394

\(\displaystyle \frac {2 (b x)^{7/2} (c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} \operatorname {AppellF1}\left (\frac {7}{2},-n,1,\frac {9}{2},-\frac {d x}{c},-\frac {f x}{e}\right )}{7 b e}\)

Input:

Int[((b*x)^(5/2)*(c + d*x)^n)/(e + f*x),x]
 

Output:

(2*(b*x)^(7/2)*(c + d*x)^n*AppellF1[7/2, -n, 1, 9/2, -((d*x)/c), -((f*x)/e 
)])/(7*b*e*(1 + (d*x)/c)^n)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 148
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))^(p_.), 
x_] :> With[{k = Denominator[m]}, Simp[k/b   Subst[Int[x^(k*(m + 1) - 1)*(c 
 + d*(x^k/b))^n*(e + f*(x^k/b))^p, x], x, (b*x)^(1/k)], x]] /; FreeQ[{b, c, 
 d, e, f, n, p}, x] && FractionQ[m] && IntegerQ[p]
 

rule 394
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/2 
, -p, -q, 1 + (m + 1)/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; FreeQ[{a, b, c, 
 d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 1] && (Int 
egerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 395
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^ 
FracPart[p])   Int[(e*x)^m*(1 + b*(x^2/a))^p*(c + d*x^2)^q, x], x] /; FreeQ 
[{a, b, c, d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 
1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [F]

\[\int \frac {\left (b x \right )^{\frac {5}{2}} \left (x d +c \right )^{n}}{f x +e}d x\]

Input:

int((b*x)^(5/2)*(d*x+c)^n/(f*x+e),x)
 

Output:

int((b*x)^(5/2)*(d*x+c)^n/(f*x+e),x)
 

Fricas [F]

\[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\int { \frac {\left (b x\right )^{\frac {5}{2}} {\left (d x + c\right )}^{n}}{f x + e} \,d x } \] Input:

integrate((b*x)^(5/2)*(d*x+c)^n/(f*x+e),x, algorithm="fricas")
 

Output:

integral(sqrt(b*x)*(d*x + c)^n*b^2*x^2/(f*x + e), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\text {Timed out} \] Input:

integrate((b*x)**(5/2)*(d*x+c)**n/(f*x+e),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\int { \frac {\left (b x\right )^{\frac {5}{2}} {\left (d x + c\right )}^{n}}{f x + e} \,d x } \] Input:

integrate((b*x)^(5/2)*(d*x+c)^n/(f*x+e),x, algorithm="maxima")
 

Output:

integrate((b*x)^(5/2)*(d*x + c)^n/(f*x + e), x)
 

Giac [F]

\[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\int { \frac {\left (b x\right )^{\frac {5}{2}} {\left (d x + c\right )}^{n}}{f x + e} \,d x } \] Input:

integrate((b*x)^(5/2)*(d*x+c)^n/(f*x+e),x, algorithm="giac")
 

Output:

integrate((b*x)^(5/2)*(d*x + c)^n/(f*x + e), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\int \frac {{\left (b\,x\right )}^{5/2}\,{\left (c+d\,x\right )}^n}{e+f\,x} \,d x \] Input:

int(((b*x)^(5/2)*(c + d*x)^n)/(e + f*x),x)
 

Output:

int(((b*x)^(5/2)*(c + d*x)^n)/(e + f*x), x)
 

Reduce [F]

\[ \int \frac {(b x)^{5/2} (c+d x)^n}{e+f x} \, dx=\text {too large to display} \] Input:

int((b*x)^(5/2)*(d*x+c)^n/(f*x+e),x)
 

Output:

(sqrt(b)*b**2*( - 12*sqrt(x)*(c + d*x)**n*c**2*e*f*n + 4*sqrt(x)*(c + d*x) 
**n*c**2*f**2*n*x + 12*sqrt(x)*(c + d*x)**n*c*d*e**2*n + 30*sqrt(x)*(c + d 
*x)**n*c*d*e**2 + 8*sqrt(x)*(c + d*x)**n*c*d*e*f*n**2*x - 10*sqrt(x)*(c + 
d*x)**n*c*d*e*f*x + 4*sqrt(x)*(c + d*x)**n*c*d*f**2*n*x**2 + 6*sqrt(x)*(c 
+ d*x)**n*c*d*f**2*x**2 - 8*sqrt(x)*(c + d*x)**n*d**2*e**2*n**2*x - 24*sqr 
t(x)*(c + d*x)**n*d**2*e**2*n*x - 10*sqrt(x)*(c + d*x)**n*d**2*e**2*x + 8* 
sqrt(x)*(c + d*x)**n*d**2*e*f*n**2*x**2 + 16*sqrt(x)*(c + d*x)**n*d**2*e*f 
*n*x**2 + 6*sqrt(x)*(c + d*x)**n*d**2*e*f*x**2 - 24*int((sqrt(x)*(c + d*x) 
**n*x)/(4*c**2*e*f*n**2 + 16*c**2*e*f*n + 15*c**2*e*f + 4*c**2*f**2*n**2*x 
 + 16*c**2*f**2*n*x + 15*c**2*f**2*x + 8*c*d*e**2*n**3 + 36*c*d*e**2*n**2 
+ 46*c*d*e**2*n + 15*c*d*e**2 + 8*c*d*e*f*n**3*x + 40*c*d*e*f*n**2*x + 62* 
c*d*e*f*n*x + 30*c*d*e*f*x + 4*c*d*f**2*n**2*x**2 + 16*c*d*f**2*n*x**2 + 1 
5*c*d*f**2*x**2 + 8*d**2*e**2*n**3*x + 36*d**2*e**2*n**2*x + 46*d**2*e**2* 
n*x + 15*d**2*e**2*x + 8*d**2*e*f*n**3*x**2 + 36*d**2*e*f*n**2*x**2 + 46*d 
**2*e*f*n*x**2 + 15*d**2*e*f*x**2),x)*c**4*f**4*n**3 - 96*int((sqrt(x)*(c 
+ d*x)**n*x)/(4*c**2*e*f*n**2 + 16*c**2*e*f*n + 15*c**2*e*f + 4*c**2*f**2* 
n**2*x + 16*c**2*f**2*n*x + 15*c**2*f**2*x + 8*c*d*e**2*n**3 + 36*c*d*e**2 
*n**2 + 46*c*d*e**2*n + 15*c*d*e**2 + 8*c*d*e*f*n**3*x + 40*c*d*e*f*n**2*x 
 + 62*c*d*e*f*n*x + 30*c*d*e*f*x + 4*c*d*f**2*n**2*x**2 + 16*c*d*f**2*n*x* 
*2 + 15*c*d*f**2*x**2 + 8*d**2*e**2*n**3*x + 36*d**2*e**2*n**2*x + 46*d...