\(\int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx\) [156]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 228 \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx=\frac {2 (b d-a e)^2 (b B d+3 A b e-4 a B e) \sqrt {d+e x}}{b^5}-\frac {(A b-a B) (b d-a e)^3 \sqrt {d+e x}}{b^5 (a+b x)}+\frac {2 (b d-a e) (b B d+2 A b e-3 a B e) (d+e x)^{3/2}}{3 b^4}+\frac {2 (b B d+A b e-2 a B e) (d+e x)^{5/2}}{5 b^3}+\frac {2 B (d+e x)^{7/2}}{7 b^2}-\frac {(b d-a e)^{5/2} (2 b B d+7 A b e-9 a B e) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{b^{11/2}} \] Output:

2*(-a*e+b*d)^2*(3*A*b*e-4*B*a*e+B*b*d)*(e*x+d)^(1/2)/b^5-(A*b-B*a)*(-a*e+b 
*d)^3*(e*x+d)^(1/2)/b^5/(b*x+a)+2/3*(-a*e+b*d)*(2*A*b*e-3*B*a*e+B*b*d)*(e* 
x+d)^(3/2)/b^4+2/5*(A*b*e-2*B*a*e+B*b*d)*(e*x+d)^(5/2)/b^3+2/7*B*(e*x+d)^( 
7/2)/b^2-(-a*e+b*d)^(5/2)*(7*A*b*e-9*B*a*e+2*B*b*d)*arctanh(b^(1/2)*(e*x+d 
)^(1/2)/(-a*e+b*d)^(1/2))/b^(11/2)
 

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.34 \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx=\frac {\sqrt {d+e x} \left (-7 A b \left (-105 a^3 e^3+35 a^2 b e^2 (7 d-2 e x)+7 a b^2 e \left (-23 d^2+24 d e x+2 e^2 x^2\right )+b^3 \left (15 d^3-116 d^2 e x-32 d e^2 x^2-6 e^3 x^3\right )\right )+B \left (-945 a^4 e^3+105 a^3 b e^2 (23 d-6 e x)+7 a^2 b^2 e \left (-277 d^2+236 d e x+18 e^2 x^2\right )+a b^3 \left (457 d^3-1380 d^2 e x-316 d e^2 x^2-54 e^3 x^3\right )+2 b^4 x \left (176 d^3+122 d^2 e x+66 d e^2 x^2+15 e^3 x^3\right )\right )\right )}{105 b^5 (a+b x)}-\frac {(-b d+a e)^{5/2} (2 b B d+7 A b e-9 a B e) \arctan \left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {-b d+a e}}\right )}{b^{11/2}} \] Input:

Integrate[((A + B*x)*(d + e*x)^(7/2))/(a + b*x)^2,x]
 

Output:

(Sqrt[d + e*x]*(-7*A*b*(-105*a^3*e^3 + 35*a^2*b*e^2*(7*d - 2*e*x) + 7*a*b^ 
2*e*(-23*d^2 + 24*d*e*x + 2*e^2*x^2) + b^3*(15*d^3 - 116*d^2*e*x - 32*d*e^ 
2*x^2 - 6*e^3*x^3)) + B*(-945*a^4*e^3 + 105*a^3*b*e^2*(23*d - 6*e*x) + 7*a 
^2*b^2*e*(-277*d^2 + 236*d*e*x + 18*e^2*x^2) + a*b^3*(457*d^3 - 1380*d^2*e 
*x - 316*d*e^2*x^2 - 54*e^3*x^3) + 2*b^4*x*(176*d^3 + 122*d^2*e*x + 66*d*e 
^2*x^2 + 15*e^3*x^3))))/(105*b^5*(a + b*x)) - ((-(b*d) + a*e)^(5/2)*(2*b*B 
*d + 7*A*b*e - 9*a*B*e)*ArcTan[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[-(b*d) + a*e]] 
)/b^(11/2)
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {87, 60, 60, 60, 60, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {(-9 a B e+7 A b e+2 b B d) \int \frac {(d+e x)^{7/2}}{a+b x}dx}{2 b (b d-a e)}-\frac {(d+e x)^{9/2} (A b-a B)}{b (a+b x) (b d-a e)}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(-9 a B e+7 A b e+2 b B d) \left (\frac {(b d-a e) \int \frac {(d+e x)^{5/2}}{a+b x}dx}{b}+\frac {2 (d+e x)^{7/2}}{7 b}\right )}{2 b (b d-a e)}-\frac {(d+e x)^{9/2} (A b-a B)}{b (a+b x) (b d-a e)}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(-9 a B e+7 A b e+2 b B d) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \int \frac {(d+e x)^{3/2}}{a+b x}dx}{b}+\frac {2 (d+e x)^{5/2}}{5 b}\right )}{b}+\frac {2 (d+e x)^{7/2}}{7 b}\right )}{2 b (b d-a e)}-\frac {(d+e x)^{9/2} (A b-a B)}{b (a+b x) (b d-a e)}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(-9 a B e+7 A b e+2 b B d) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \int \frac {\sqrt {d+e x}}{a+b x}dx}{b}+\frac {2 (d+e x)^{3/2}}{3 b}\right )}{b}+\frac {2 (d+e x)^{5/2}}{5 b}\right )}{b}+\frac {2 (d+e x)^{7/2}}{7 b}\right )}{2 b (b d-a e)}-\frac {(d+e x)^{9/2} (A b-a B)}{b (a+b x) (b d-a e)}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {(-9 a B e+7 A b e+2 b B d) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \int \frac {1}{(a+b x) \sqrt {d+e x}}dx}{b}+\frac {2 \sqrt {d+e x}}{b}\right )}{b}+\frac {2 (d+e x)^{3/2}}{3 b}\right )}{b}+\frac {2 (d+e x)^{5/2}}{5 b}\right )}{b}+\frac {2 (d+e x)^{7/2}}{7 b}\right )}{2 b (b d-a e)}-\frac {(d+e x)^{9/2} (A b-a B)}{b (a+b x) (b d-a e)}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {(-9 a B e+7 A b e+2 b B d) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \left (\frac {2 (b d-a e) \int \frac {1}{a+\frac {b (d+e x)}{e}-\frac {b d}{e}}d\sqrt {d+e x}}{b e}+\frac {2 \sqrt {d+e x}}{b}\right )}{b}+\frac {2 (d+e x)^{3/2}}{3 b}\right )}{b}+\frac {2 (d+e x)^{5/2}}{5 b}\right )}{b}+\frac {2 (d+e x)^{7/2}}{7 b}\right )}{2 b (b d-a e)}-\frac {(d+e x)^{9/2} (A b-a B)}{b (a+b x) (b d-a e)}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {(-9 a B e+7 A b e+2 b B d) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \left (\frac {(b d-a e) \left (\frac {2 \sqrt {d+e x}}{b}-\frac {2 \sqrt {b d-a e} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{b^{3/2}}\right )}{b}+\frac {2 (d+e x)^{3/2}}{3 b}\right )}{b}+\frac {2 (d+e x)^{5/2}}{5 b}\right )}{b}+\frac {2 (d+e x)^{7/2}}{7 b}\right )}{2 b (b d-a e)}-\frac {(d+e x)^{9/2} (A b-a B)}{b (a+b x) (b d-a e)}\)

Input:

Int[((A + B*x)*(d + e*x)^(7/2))/(a + b*x)^2,x]
 

Output:

-(((A*b - a*B)*(d + e*x)^(9/2))/(b*(b*d - a*e)*(a + b*x))) + ((2*b*B*d + 7 
*A*b*e - 9*a*B*e)*((2*(d + e*x)^(7/2))/(7*b) + ((b*d - a*e)*((2*(d + e*x)^ 
(5/2))/(5*b) + ((b*d - a*e)*((2*(d + e*x)^(3/2))/(3*b) + ((b*d - a*e)*((2* 
Sqrt[d + e*x])/b - (2*Sqrt[b*d - a*e]*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt 
[b*d - a*e]])/b^(3/2)))/b))/b))/b))/(2*b*(b*d - a*e))
 

Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 
Maple [A] (verified)

Time = 0.57 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.22

method result size
pseudoelliptic \(\frac {-7 \left (\left (A e +\frac {2 B d}{7}\right ) b -\frac {9 B a e}{7}\right ) \left (b x +a \right ) \left (a e -d b \right )^{3} \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -d b \right ) b}}\right )+7 \sqrt {e x +d}\, \sqrt {\left (a e -d b \right ) b}\, \left (\left (\frac {2 x^{3} \left (\frac {5 B x}{7}+A \right ) e^{3}}{35}+\frac {32 \left (\frac {33 B x}{56}+A \right ) x^{2} d \,e^{2}}{105}+\frac {116 \left (\frac {61 B x}{203}+A \right ) x \,d^{2} e}{105}-\frac {d^{3} \left (-\frac {352 B x}{105}+A \right )}{7}\right ) b^{4}+\frac {23 a \left (-\frac {2 \left (\frac {27 B x}{49}+A \right ) x^{2} e^{3}}{23}-\frac {24 x d \left (\frac {79 B x}{294}+A \right ) e^{2}}{23}+d^{2} \left (-\frac {60 B x}{49}+A \right ) e +\frac {457 B \,d^{3}}{1127}\right ) b^{3}}{15}-\frac {7 a^{2} e \left (-\frac {2 x \left (\frac {9 B x}{35}+A \right ) e^{2}}{7}+d \left (-\frac {236 B x}{245}+A \right ) e +\frac {277 B \,d^{2}}{245}\right ) b^{2}}{3}+a^{3} e^{2} \left (\left (-\frac {6 B x}{7}+A \right ) e +\frac {23 B d}{7}\right ) b -\frac {9 B \,a^{4} e^{3}}{7}\right )}{b^{5} \left (b x +a \right ) \sqrt {\left (a e -d b \right ) b}}\) \(278\)
risch \(\frac {2 \left (15 b^{3} B \,x^{3} e^{3}+21 A \,b^{3} e^{3} x^{2}-42 B a \,b^{2} e^{3} x^{2}+66 B \,b^{3} d \,e^{2} x^{2}-70 A x a \,b^{2} e^{3}+112 A x \,b^{3} d \,e^{2}+105 B x \,a^{2} b \,e^{3}-224 B a \,b^{2} d \,e^{2} x +122 B x \,b^{3} d^{2} e +315 A \,a^{2} b \,e^{3}-700 A a \,b^{2} d \,e^{2}+406 A \,b^{3} d^{2} e -420 B \,a^{3} e^{3}+1050 B \,a^{2} b d \,e^{2}-812 B a \,b^{2} d^{2} e +176 b^{3} B \,d^{3}\right ) \sqrt {e x +d}}{105 b^{5}}-\frac {\left (2 a^{3} e^{3}-6 a^{2} b d \,e^{2}+6 a \,b^{2} d^{2} e -2 b^{3} d^{3}\right ) \left (\frac {\left (-\frac {1}{2} A b e +\frac {1}{2} B a e \right ) \sqrt {e x +d}}{\left (e x +d \right ) b +a e -d b}+\frac {\left (7 A b e -9 B a e +2 B b d \right ) \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -d b \right ) b}}\right )}{2 \sqrt {\left (a e -d b \right ) b}}\right )}{b^{5}}\) \(323\)
derivativedivides \(\frac {\frac {2 b^{3} B \left (e x +d \right )^{\frac {7}{2}}}{7}+\frac {2 A \,b^{3} e \left (e x +d \right )^{\frac {5}{2}}}{5}-\frac {4 B a \,b^{2} e \left (e x +d \right )^{\frac {5}{2}}}{5}+\frac {2 B \,b^{3} d \left (e x +d \right )^{\frac {5}{2}}}{5}-\frac {4 A a \,b^{2} e^{2} \left (e x +d \right )^{\frac {3}{2}}}{3}+\frac {4 A \,b^{3} d e \left (e x +d \right )^{\frac {3}{2}}}{3}+2 B \,a^{2} b \,e^{2} \left (e x +d \right )^{\frac {3}{2}}-\frac {8 B a \,b^{2} d e \left (e x +d \right )^{\frac {3}{2}}}{3}+\frac {2 B \,b^{3} d^{2} \left (e x +d \right )^{\frac {3}{2}}}{3}+6 A \,a^{2} b \,e^{3} \sqrt {e x +d}-12 A a \,b^{2} d \,e^{2} \sqrt {e x +d}+6 A \,b^{3} d^{2} e \sqrt {e x +d}-8 B \,a^{3} e^{3} \sqrt {e x +d}+18 B \,a^{2} b d \,e^{2} \sqrt {e x +d}-12 B a \,b^{2} d^{2} e \sqrt {e x +d}+2 B \,b^{3} d^{3} \sqrt {e x +d}}{b^{5}}-\frac {2 \left (\frac {\left (-\frac {1}{2} A \,a^{3} b \,e^{4}+\frac {3}{2} A \,a^{2} b^{2} d \,e^{3}-\frac {3}{2} A a \,b^{3} d^{2} e^{2}+\frac {1}{2} A \,b^{4} d^{3} e +\frac {1}{2} B \,a^{4} e^{4}-\frac {3}{2} B \,a^{3} b d \,e^{3}+\frac {3}{2} B \,a^{2} b^{2} d^{2} e^{2}-\frac {1}{2} B a \,b^{3} d^{3} e \right ) \sqrt {e x +d}}{\left (e x +d \right ) b +a e -d b}+\frac {\left (7 A \,a^{3} b \,e^{4}-21 A \,a^{2} b^{2} d \,e^{3}+21 A a \,b^{3} d^{2} e^{2}-7 A \,b^{4} d^{3} e -9 B \,a^{4} e^{4}+29 B \,a^{3} b d \,e^{3}-33 B \,a^{2} b^{2} d^{2} e^{2}+15 B a \,b^{3} d^{3} e -2 B \,b^{4} d^{4}\right ) \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -d b \right ) b}}\right )}{2 \sqrt {\left (a e -d b \right ) b}}\right )}{b^{5}}\) \(525\)
default \(\frac {\frac {2 b^{3} B \left (e x +d \right )^{\frac {7}{2}}}{7}+\frac {2 A \,b^{3} e \left (e x +d \right )^{\frac {5}{2}}}{5}-\frac {4 B a \,b^{2} e \left (e x +d \right )^{\frac {5}{2}}}{5}+\frac {2 B \,b^{3} d \left (e x +d \right )^{\frac {5}{2}}}{5}-\frac {4 A a \,b^{2} e^{2} \left (e x +d \right )^{\frac {3}{2}}}{3}+\frac {4 A \,b^{3} d e \left (e x +d \right )^{\frac {3}{2}}}{3}+2 B \,a^{2} b \,e^{2} \left (e x +d \right )^{\frac {3}{2}}-\frac {8 B a \,b^{2} d e \left (e x +d \right )^{\frac {3}{2}}}{3}+\frac {2 B \,b^{3} d^{2} \left (e x +d \right )^{\frac {3}{2}}}{3}+6 A \,a^{2} b \,e^{3} \sqrt {e x +d}-12 A a \,b^{2} d \,e^{2} \sqrt {e x +d}+6 A \,b^{3} d^{2} e \sqrt {e x +d}-8 B \,a^{3} e^{3} \sqrt {e x +d}+18 B \,a^{2} b d \,e^{2} \sqrt {e x +d}-12 B a \,b^{2} d^{2} e \sqrt {e x +d}+2 B \,b^{3} d^{3} \sqrt {e x +d}}{b^{5}}-\frac {2 \left (\frac {\left (-\frac {1}{2} A \,a^{3} b \,e^{4}+\frac {3}{2} A \,a^{2} b^{2} d \,e^{3}-\frac {3}{2} A a \,b^{3} d^{2} e^{2}+\frac {1}{2} A \,b^{4} d^{3} e +\frac {1}{2} B \,a^{4} e^{4}-\frac {3}{2} B \,a^{3} b d \,e^{3}+\frac {3}{2} B \,a^{2} b^{2} d^{2} e^{2}-\frac {1}{2} B a \,b^{3} d^{3} e \right ) \sqrt {e x +d}}{\left (e x +d \right ) b +a e -d b}+\frac {\left (7 A \,a^{3} b \,e^{4}-21 A \,a^{2} b^{2} d \,e^{3}+21 A a \,b^{3} d^{2} e^{2}-7 A \,b^{4} d^{3} e -9 B \,a^{4} e^{4}+29 B \,a^{3} b d \,e^{3}-33 B \,a^{2} b^{2} d^{2} e^{2}+15 B a \,b^{3} d^{3} e -2 B \,b^{4} d^{4}\right ) \arctan \left (\frac {b \sqrt {e x +d}}{\sqrt {\left (a e -d b \right ) b}}\right )}{2 \sqrt {\left (a e -d b \right ) b}}\right )}{b^{5}}\) \(525\)

Input:

int((B*x+A)*(e*x+d)^(7/2)/(b*x+a)^2,x,method=_RETURNVERBOSE)
 

Output:

7*(-((A*e+2/7*B*d)*b-9/7*B*a*e)*(b*x+a)*(a*e-b*d)^3*arctan(b*(e*x+d)^(1/2) 
/((a*e-b*d)*b)^(1/2))+(e*x+d)^(1/2)*((a*e-b*d)*b)^(1/2)*((2/35*x^3*(5/7*B* 
x+A)*e^3+32/105*(33/56*B*x+A)*x^2*d*e^2+116/105*(61/203*B*x+A)*x*d^2*e-1/7 
*d^3*(-352/105*B*x+A))*b^4+23/15*a*(-2/23*(27/49*B*x+A)*x^2*e^3-24/23*x*d* 
(79/294*B*x+A)*e^2+d^2*(-60/49*B*x+A)*e+457/1127*B*d^3)*b^3-7/3*a^2*e*(-2/ 
7*x*(9/35*B*x+A)*e^2+d*(-236/245*B*x+A)*e+277/245*B*d^2)*b^2+a^3*e^2*((-6/ 
7*B*x+A)*e+23/7*B*d)*b-9/7*B*a^4*e^3))/((a*e-b*d)*b)^(1/2)/b^5/(b*x+a)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 498 vs. \(2 (201) = 402\).

Time = 0.11 (sec) , antiderivative size = 1006, normalized size of antiderivative = 4.41 \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx =\text {Too large to display} \] Input:

integrate((B*x+A)*(e*x+d)^(7/2)/(b*x+a)^2,x, algorithm="fricas")
 

Output:

[1/210*(105*(2*B*a*b^3*d^3 - (13*B*a^2*b^2 - 7*A*a*b^3)*d^2*e + 2*(10*B*a^ 
3*b - 7*A*a^2*b^2)*d*e^2 - (9*B*a^4 - 7*A*a^3*b)*e^3 + (2*B*b^4*d^3 - (13* 
B*a*b^3 - 7*A*b^4)*d^2*e + 2*(10*B*a^2*b^2 - 7*A*a*b^3)*d*e^2 - (9*B*a^3*b 
 - 7*A*a^2*b^2)*e^3)*x)*sqrt((b*d - a*e)/b)*log((b*e*x + 2*b*d - a*e - 2*s 
qrt(e*x + d)*b*sqrt((b*d - a*e)/b))/(b*x + a)) + 2*(30*B*b^4*e^3*x^4 + (45 
7*B*a*b^3 - 105*A*b^4)*d^3 - 7*(277*B*a^2*b^2 - 161*A*a*b^3)*d^2*e + 35*(6 
9*B*a^3*b - 49*A*a^2*b^2)*d*e^2 - 105*(9*B*a^4 - 7*A*a^3*b)*e^3 + 6*(22*B* 
b^4*d*e^2 - (9*B*a*b^3 - 7*A*b^4)*e^3)*x^3 + 2*(122*B*b^4*d^2*e - 2*(79*B* 
a*b^3 - 56*A*b^4)*d*e^2 + 7*(9*B*a^2*b^2 - 7*A*a*b^3)*e^3)*x^2 + 2*(176*B* 
b^4*d^3 - 2*(345*B*a*b^3 - 203*A*b^4)*d^2*e + 14*(59*B*a^2*b^2 - 42*A*a*b^ 
3)*d*e^2 - 35*(9*B*a^3*b - 7*A*a^2*b^2)*e^3)*x)*sqrt(e*x + d))/(b^6*x + a* 
b^5), -1/105*(105*(2*B*a*b^3*d^3 - (13*B*a^2*b^2 - 7*A*a*b^3)*d^2*e + 2*(1 
0*B*a^3*b - 7*A*a^2*b^2)*d*e^2 - (9*B*a^4 - 7*A*a^3*b)*e^3 + (2*B*b^4*d^3 
- (13*B*a*b^3 - 7*A*b^4)*d^2*e + 2*(10*B*a^2*b^2 - 7*A*a*b^3)*d*e^2 - (9*B 
*a^3*b - 7*A*a^2*b^2)*e^3)*x)*sqrt(-(b*d - a*e)/b)*arctan(-sqrt(e*x + d)*b 
*sqrt(-(b*d - a*e)/b)/(b*d - a*e)) - (30*B*b^4*e^3*x^4 + (457*B*a*b^3 - 10 
5*A*b^4)*d^3 - 7*(277*B*a^2*b^2 - 161*A*a*b^3)*d^2*e + 35*(69*B*a^3*b - 49 
*A*a^2*b^2)*d*e^2 - 105*(9*B*a^4 - 7*A*a^3*b)*e^3 + 6*(22*B*b^4*d*e^2 - (9 
*B*a*b^3 - 7*A*b^4)*e^3)*x^3 + 2*(122*B*b^4*d^2*e - 2*(79*B*a*b^3 - 56*A*b 
^4)*d*e^2 + 7*(9*B*a^2*b^2 - 7*A*a*b^3)*e^3)*x^2 + 2*(176*B*b^4*d^3 - 2...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx=\text {Timed out} \] Input:

integrate((B*x+A)*(e*x+d)**(7/2)/(b*x+a)**2,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((B*x+A)*(e*x+d)^(7/2)/(b*x+a)^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e-b*d>0)', see `assume?` for m 
ore detail
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 583 vs. \(2 (201) = 402\).

Time = 0.14 (sec) , antiderivative size = 583, normalized size of antiderivative = 2.56 \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx=\frac {{\left (2 \, B b^{4} d^{4} - 15 \, B a b^{3} d^{3} e + 7 \, A b^{4} d^{3} e + 33 \, B a^{2} b^{2} d^{2} e^{2} - 21 \, A a b^{3} d^{2} e^{2} - 29 \, B a^{3} b d e^{3} + 21 \, A a^{2} b^{2} d e^{3} + 9 \, B a^{4} e^{4} - 7 \, A a^{3} b e^{4}\right )} \arctan \left (\frac {\sqrt {e x + d} b}{\sqrt {-b^{2} d + a b e}}\right )}{\sqrt {-b^{2} d + a b e} b^{5}} + \frac {\sqrt {e x + d} B a b^{3} d^{3} e - \sqrt {e x + d} A b^{4} d^{3} e - 3 \, \sqrt {e x + d} B a^{2} b^{2} d^{2} e^{2} + 3 \, \sqrt {e x + d} A a b^{3} d^{2} e^{2} + 3 \, \sqrt {e x + d} B a^{3} b d e^{3} - 3 \, \sqrt {e x + d} A a^{2} b^{2} d e^{3} - \sqrt {e x + d} B a^{4} e^{4} + \sqrt {e x + d} A a^{3} b e^{4}}{{\left ({\left (e x + d\right )} b - b d + a e\right )} b^{5}} + \frac {2 \, {\left (15 \, {\left (e x + d\right )}^{\frac {7}{2}} B b^{12} + 21 \, {\left (e x + d\right )}^{\frac {5}{2}} B b^{12} d + 35 \, {\left (e x + d\right )}^{\frac {3}{2}} B b^{12} d^{2} + 105 \, \sqrt {e x + d} B b^{12} d^{3} - 42 \, {\left (e x + d\right )}^{\frac {5}{2}} B a b^{11} e + 21 \, {\left (e x + d\right )}^{\frac {5}{2}} A b^{12} e - 140 \, {\left (e x + d\right )}^{\frac {3}{2}} B a b^{11} d e + 70 \, {\left (e x + d\right )}^{\frac {3}{2}} A b^{12} d e - 630 \, \sqrt {e x + d} B a b^{11} d^{2} e + 315 \, \sqrt {e x + d} A b^{12} d^{2} e + 105 \, {\left (e x + d\right )}^{\frac {3}{2}} B a^{2} b^{10} e^{2} - 70 \, {\left (e x + d\right )}^{\frac {3}{2}} A a b^{11} e^{2} + 945 \, \sqrt {e x + d} B a^{2} b^{10} d e^{2} - 630 \, \sqrt {e x + d} A a b^{11} d e^{2} - 420 \, \sqrt {e x + d} B a^{3} b^{9} e^{3} + 315 \, \sqrt {e x + d} A a^{2} b^{10} e^{3}\right )}}{105 \, b^{14}} \] Input:

integrate((B*x+A)*(e*x+d)^(7/2)/(b*x+a)^2,x, algorithm="giac")
 

Output:

(2*B*b^4*d^4 - 15*B*a*b^3*d^3*e + 7*A*b^4*d^3*e + 33*B*a^2*b^2*d^2*e^2 - 2 
1*A*a*b^3*d^2*e^2 - 29*B*a^3*b*d*e^3 + 21*A*a^2*b^2*d*e^3 + 9*B*a^4*e^4 - 
7*A*a^3*b*e^4)*arctan(sqrt(e*x + d)*b/sqrt(-b^2*d + a*b*e))/(sqrt(-b^2*d + 
 a*b*e)*b^5) + (sqrt(e*x + d)*B*a*b^3*d^3*e - sqrt(e*x + d)*A*b^4*d^3*e - 
3*sqrt(e*x + d)*B*a^2*b^2*d^2*e^2 + 3*sqrt(e*x + d)*A*a*b^3*d^2*e^2 + 3*sq 
rt(e*x + d)*B*a^3*b*d*e^3 - 3*sqrt(e*x + d)*A*a^2*b^2*d*e^3 - sqrt(e*x + d 
)*B*a^4*e^4 + sqrt(e*x + d)*A*a^3*b*e^4)/(((e*x + d)*b - b*d + a*e)*b^5) + 
 2/105*(15*(e*x + d)^(7/2)*B*b^12 + 21*(e*x + d)^(5/2)*B*b^12*d + 35*(e*x 
+ d)^(3/2)*B*b^12*d^2 + 105*sqrt(e*x + d)*B*b^12*d^3 - 42*(e*x + d)^(5/2)* 
B*a*b^11*e + 21*(e*x + d)^(5/2)*A*b^12*e - 140*(e*x + d)^(3/2)*B*a*b^11*d* 
e + 70*(e*x + d)^(3/2)*A*b^12*d*e - 630*sqrt(e*x + d)*B*a*b^11*d^2*e + 315 
*sqrt(e*x + d)*A*b^12*d^2*e + 105*(e*x + d)^(3/2)*B*a^2*b^10*e^2 - 70*(e*x 
 + d)^(3/2)*A*a*b^11*e^2 + 945*sqrt(e*x + d)*B*a^2*b^10*d*e^2 - 630*sqrt(e 
*x + d)*A*a*b^11*d*e^2 - 420*sqrt(e*x + d)*B*a^3*b^9*e^3 + 315*sqrt(e*x + 
d)*A*a^2*b^10*e^3)/b^14
 

Mupad [B] (verification not implemented)

Time = 1.01 (sec) , antiderivative size = 562, normalized size of antiderivative = 2.46 \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx=\left (\frac {2\,A\,e-2\,B\,d}{5\,b^2}+\frac {2\,B\,\left (2\,b^2\,d-2\,a\,b\,e\right )}{5\,b^4}\right )\,{\left (d+e\,x\right )}^{5/2}+\left (\frac {\left (\frac {\left (2\,b^2\,d-2\,a\,b\,e\right )\,\left (\frac {2\,A\,e-2\,B\,d}{b^2}+\frac {2\,B\,\left (2\,b^2\,d-2\,a\,b\,e\right )}{b^4}\right )}{b^2}-\frac {2\,B\,{\left (a\,e-b\,d\right )}^2}{b^4}\right )\,\left (2\,b^2\,d-2\,a\,b\,e\right )}{b^2}-\frac {{\left (a\,e-b\,d\right )}^2\,\left (\frac {2\,A\,e-2\,B\,d}{b^2}+\frac {2\,B\,\left (2\,b^2\,d-2\,a\,b\,e\right )}{b^4}\right )}{b^2}\right )\,\sqrt {d+e\,x}+\left (\frac {\left (2\,b^2\,d-2\,a\,b\,e\right )\,\left (\frac {2\,A\,e-2\,B\,d}{b^2}+\frac {2\,B\,\left (2\,b^2\,d-2\,a\,b\,e\right )}{b^4}\right )}{3\,b^2}-\frac {2\,B\,{\left (a\,e-b\,d\right )}^2}{3\,b^4}\right )\,{\left (d+e\,x\right )}^{3/2}-\frac {\sqrt {d+e\,x}\,\left (B\,a^4\,e^4-3\,B\,a^3\,b\,d\,e^3-A\,a^3\,b\,e^4+3\,B\,a^2\,b^2\,d^2\,e^2+3\,A\,a^2\,b^2\,d\,e^3-B\,a\,b^3\,d^3\,e-3\,A\,a\,b^3\,d^2\,e^2+A\,b^4\,d^3\,e\right )}{b^6\,\left (d+e\,x\right )-b^6\,d+a\,b^5\,e}+\frac {2\,B\,{\left (d+e\,x\right )}^{7/2}}{7\,b^2}+\frac {\mathrm {atan}\left (\frac {\sqrt {b}\,{\left (a\,e-b\,d\right )}^{5/2}\,\sqrt {d+e\,x}\,\left (7\,A\,b\,e-9\,B\,a\,e+2\,B\,b\,d\right )}{9\,B\,a^4\,e^4-29\,B\,a^3\,b\,d\,e^3-7\,A\,a^3\,b\,e^4+33\,B\,a^2\,b^2\,d^2\,e^2+21\,A\,a^2\,b^2\,d\,e^3-15\,B\,a\,b^3\,d^3\,e-21\,A\,a\,b^3\,d^2\,e^2+2\,B\,b^4\,d^4+7\,A\,b^4\,d^3\,e}\right )\,{\left (a\,e-b\,d\right )}^{5/2}\,\left (7\,A\,b\,e-9\,B\,a\,e+2\,B\,b\,d\right )}{b^{11/2}} \] Input:

int(((A + B*x)*(d + e*x)^(7/2))/(a + b*x)^2,x)
 

Output:

((2*A*e - 2*B*d)/(5*b^2) + (2*B*(2*b^2*d - 2*a*b*e))/(5*b^4))*(d + e*x)^(5 
/2) + (((((2*b^2*d - 2*a*b*e)*((2*A*e - 2*B*d)/b^2 + (2*B*(2*b^2*d - 2*a*b 
*e))/b^4))/b^2 - (2*B*(a*e - b*d)^2)/b^4)*(2*b^2*d - 2*a*b*e))/b^2 - ((a*e 
 - b*d)^2*((2*A*e - 2*B*d)/b^2 + (2*B*(2*b^2*d - 2*a*b*e))/b^4))/b^2)*(d + 
 e*x)^(1/2) + (((2*b^2*d - 2*a*b*e)*((2*A*e - 2*B*d)/b^2 + (2*B*(2*b^2*d - 
 2*a*b*e))/b^4))/(3*b^2) - (2*B*(a*e - b*d)^2)/(3*b^4))*(d + e*x)^(3/2) - 
((d + e*x)^(1/2)*(B*a^4*e^4 - A*a^3*b*e^4 + A*b^4*d^3*e - 3*A*a*b^3*d^2*e^ 
2 + 3*A*a^2*b^2*d*e^3 + 3*B*a^2*b^2*d^2*e^2 - B*a*b^3*d^3*e - 3*B*a^3*b*d* 
e^3))/(b^6*(d + e*x) - b^6*d + a*b^5*e) + (2*B*(d + e*x)^(7/2))/(7*b^2) + 
(atan((b^(1/2)*(a*e - b*d)^(5/2)*(d + e*x)^(1/2)*(7*A*b*e - 9*B*a*e + 2*B* 
b*d))/(9*B*a^4*e^4 + 2*B*b^4*d^4 - 7*A*a^3*b*e^4 + 7*A*b^4*d^3*e - 21*A*a* 
b^3*d^2*e^2 + 21*A*a^2*b^2*d*e^3 + 33*B*a^2*b^2*d^2*e^2 - 15*B*a*b^3*d^3*e 
 - 29*B*a^3*b*d*e^3))*(a*e - b*d)^(5/2)*(7*A*b*e - 9*B*a*e + 2*B*b*d))/b^( 
11/2)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 349, normalized size of antiderivative = 1.53 \[ \int \frac {(A+B x) (d+e x)^{7/2}}{(a+b x)^2} \, dx=\frac {2 \sqrt {b}\, \sqrt {a e -b d}\, \mathit {atan} \left (\frac {\sqrt {e x +d}\, b}{\sqrt {b}\, \sqrt {a e -b d}}\right ) a^{3} e^{3}-6 \sqrt {b}\, \sqrt {a e -b d}\, \mathit {atan} \left (\frac {\sqrt {e x +d}\, b}{\sqrt {b}\, \sqrt {a e -b d}}\right ) a^{2} b d \,e^{2}+6 \sqrt {b}\, \sqrt {a e -b d}\, \mathit {atan} \left (\frac {\sqrt {e x +d}\, b}{\sqrt {b}\, \sqrt {a e -b d}}\right ) a \,b^{2} d^{2} e -2 \sqrt {b}\, \sqrt {a e -b d}\, \mathit {atan} \left (\frac {\sqrt {e x +d}\, b}{\sqrt {b}\, \sqrt {a e -b d}}\right ) b^{3} d^{3}-2 \sqrt {e x +d}\, a^{3} b \,e^{3}+\frac {20 \sqrt {e x +d}\, a^{2} b^{2} d \,e^{2}}{3}+\frac {2 \sqrt {e x +d}\, a^{2} b^{2} e^{3} x}{3}-\frac {116 \sqrt {e x +d}\, a \,b^{3} d^{2} e}{15}-\frac {32 \sqrt {e x +d}\, a \,b^{3} d \,e^{2} x}{15}-\frac {2 \sqrt {e x +d}\, a \,b^{3} e^{3} x^{2}}{5}+\frac {352 \sqrt {e x +d}\, b^{4} d^{3}}{105}+\frac {244 \sqrt {e x +d}\, b^{4} d^{2} e x}{105}+\frac {44 \sqrt {e x +d}\, b^{4} d \,e^{2} x^{2}}{35}+\frac {2 \sqrt {e x +d}\, b^{4} e^{3} x^{3}}{7}}{b^{5}} \] Input:

int((B*x+A)*(e*x+d)^(7/2)/(b*x+a)^2,x)
 

Output:

(2*(105*sqrt(b)*sqrt(a*e - b*d)*atan((sqrt(d + e*x)*b)/(sqrt(b)*sqrt(a*e - 
 b*d)))*a**3*e**3 - 315*sqrt(b)*sqrt(a*e - b*d)*atan((sqrt(d + e*x)*b)/(sq 
rt(b)*sqrt(a*e - b*d)))*a**2*b*d*e**2 + 315*sqrt(b)*sqrt(a*e - b*d)*atan(( 
sqrt(d + e*x)*b)/(sqrt(b)*sqrt(a*e - b*d)))*a*b**2*d**2*e - 105*sqrt(b)*sq 
rt(a*e - b*d)*atan((sqrt(d + e*x)*b)/(sqrt(b)*sqrt(a*e - b*d)))*b**3*d**3 
- 105*sqrt(d + e*x)*a**3*b*e**3 + 350*sqrt(d + e*x)*a**2*b**2*d*e**2 + 35* 
sqrt(d + e*x)*a**2*b**2*e**3*x - 406*sqrt(d + e*x)*a*b**3*d**2*e - 112*sqr 
t(d + e*x)*a*b**3*d*e**2*x - 21*sqrt(d + e*x)*a*b**3*e**3*x**2 + 176*sqrt( 
d + e*x)*b**4*d**3 + 122*sqrt(d + e*x)*b**4*d**2*e*x + 66*sqrt(d + e*x)*b* 
*4*d*e**2*x**2 + 15*sqrt(d + e*x)*b**4*e**3*x**3))/(105*b**5)