\(\int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx\) [1247]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 34, antiderivative size = 96 \[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=\frac {2 \sqrt {a} \sqrt {\frac {b (c+d x)}{b c-a d}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-e} \sqrt {a+b x}}{\sqrt {a}}\right ),-\frac {a d}{(b c-a d) (1-e)}\right )}{b \sqrt {1-e} \sqrt {c+d x}} \] Output:

2*a^(1/2)*(b*(d*x+c)/(-a*d+b*c))^(1/2)*EllipticF((1-e)^(1/2)*(b*x+a)^(1/2) 
/a^(1/2),(-a*d/(-a*d+b*c)/(1-e))^(1/2))/b/(1-e)^(1/2)/(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 12.42 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.31 \[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=-\frac {2 \sqrt {c+d x} \sqrt {\frac {-1+e+\frac {a}{a+b x}}{-1+e}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {-\frac {a}{-1+e}}}{\sqrt {a+b x}}\right ),\frac {(b c-a d) (-1+e)}{a d}\right )}{d \sqrt {-\frac {a}{-1+e}} \sqrt {\frac {b (c+d x)}{d (a+b x)}} \sqrt {e+\frac {b (-1+e) x}{a}}} \] Input:

Integrate[1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + (b*(-1 + e)*x)/a]),x]
 

Output:

(-2*Sqrt[c + d*x]*Sqrt[(-1 + e + a/(a + b*x))/(-1 + e)]*EllipticF[ArcSin[S 
qrt[-(a/(-1 + e))]/Sqrt[a + b*x]], ((b*c - a*d)*(-1 + e))/(a*d)])/(d*Sqrt[ 
-(a/(-1 + e))]*Sqrt[(b*(c + d*x))/(d*(a + b*x))]*Sqrt[e + (b*(-1 + e)*x)/a 
])
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {131, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {\frac {b (e-1) x}{a}+e}} \, dx\)

\(\Big \downarrow \) 131

\(\displaystyle \frac {\sqrt {\frac {b (c+d x)}{b c-a d}} \int \frac {1}{\sqrt {a+b x} \sqrt {\frac {b c}{b c-a d}+\frac {b d x}{b c-a d}} \sqrt {e-\frac {b (1-e) x}{a}}}dx}{\sqrt {c+d x}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {2 \sqrt {a} \sqrt {\frac {b (c+d x)}{b c-a d}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-e} \sqrt {a+b x}}{\sqrt {a}}\right ),-\frac {a d}{(b c-a d) (1-e)}\right )}{b \sqrt {1-e} \sqrt {c+d x}}\)

Input:

Int[1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + (b*(-1 + e)*x)/a]),x]
 

Output:

(2*Sqrt[a]*Sqrt[(b*(c + d*x))/(b*c - a*d)]*EllipticF[ArcSin[(Sqrt[1 - e]*S 
qrt[a + b*x])/Sqrt[a]], -((a*d)/((b*c - a*d)*(1 - e)))])/(b*Sqrt[1 - e]*Sq 
rt[c + d*x])
 

Defintions of rubi rules used

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 131
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[Sqrt[b*((c + d*x)/(b*c - a*d))]/Sqrt[c + d*x]   Int[1/(Sq 
rt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e + f*x]), x 
], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && Simpler 
Q[a + b*x, c + d*x] && SimplerQ[a + b*x, e + f*x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(206\) vs. \(2(83)=166\).

Time = 4.38 (sec) , antiderivative size = 207, normalized size of antiderivative = 2.16

method result size
default \(\frac {2 \sqrt {b x +a}\, \sqrt {x d +c}\, \sqrt {\frac {d \left (b e x +a e -b x \right )}{a d e -b c e +b c}}\, \sqrt {-\frac {\left (b x +a \right ) \left (-1+e \right )}{a}}\, \sqrt {-\frac {\left (x d +c \right ) b \left (-1+e \right )}{a d e -b c e +b c}}\, \operatorname {EllipticF}\left (\sqrt {\frac {d \left (b e x +a e -b x \right )}{a d e -b c e +b c}}, \sqrt {\frac {a d e -b c e +b c}{d a}}\right ) \left (a d e -b c e +b c \right )}{\sqrt {\frac {b e x +a e -b x}{a}}\, \left (b d \,x^{2}+a d x +b c x +a c \right ) b d \left (-1+e \right )}\) \(207\)
elliptic \(\frac {2 \sqrt {\frac {\left (b x +a \right ) \left (x d +c \right ) \left (b e x +a e -b x \right )}{a}}\, \left (\frac {a e}{\left (-1+e \right ) b}-\frac {c}{d}\right ) \sqrt {\frac {x +\frac {a e}{\left (-1+e \right ) b}}{\frac {a e}{\left (-1+e \right ) b}-\frac {c}{d}}}\, \sqrt {\frac {x +\frac {a}{b}}{-\frac {a e}{\left (-1+e \right ) b}+\frac {a}{b}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {a e}{\left (-1+e \right ) b}+\frac {c}{d}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {a e}{\left (-1+e \right ) b}}{\frac {a e}{\left (-1+e \right ) b}-\frac {c}{d}}}, \sqrt {\frac {-\frac {a e}{\left (-1+e \right ) b}+\frac {c}{d}}{-\frac {a e}{\left (-1+e \right ) b}+\frac {a}{b}}}\right )}{\sqrt {b x +a}\, \sqrt {x d +c}\, \sqrt {\frac {b e x +a e -b x}{a}}\, \sqrt {\frac {b^{2} d e \,x^{3}}{a}+2 b d e \,x^{2}+\frac {b^{2} c e \,x^{2}}{a}-\frac {x^{3} d \,b^{2}}{a}+a d e x +2 b c e x -b d \,x^{2}-\frac {b^{2} c \,x^{2}}{a}+a c e -b c x}}\) \(341\)

Input:

int(1/(b*x+a)^(1/2)/(d*x+c)^(1/2)/(e+b*(-1+e)*x/a)^(1/2),x,method=_RETURNV 
ERBOSE)
 

Output:

2*(b*x+a)^(1/2)*(d*x+c)^(1/2)*(d*(b*e*x+a*e-b*x)/(a*d*e-b*c*e+b*c))^(1/2)* 
(-(b*x+a)*(-1+e)/a)^(1/2)*(-(d*x+c)*b*(-1+e)/(a*d*e-b*c*e+b*c))^(1/2)*Elli 
pticF((d*(b*e*x+a*e-b*x)/(a*d*e-b*c*e+b*c))^(1/2),((a*d*e-b*c*e+b*c)/d/a)^ 
(1/2))*(a*d*e-b*c*e+b*c)/((b*e*x+a*e-b*x)/a)^(1/2)/(b*d*x^2+a*d*x+b*c*x+a* 
c)/b/d/(-1+e)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 384 vs. \(2 (80) = 160\).

Time = 0.09 (sec) , antiderivative size = 384, normalized size of antiderivative = 4.00 \[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=\frac {2 \, a \sqrt {\frac {b^{2} d e - b^{2} d}{a}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (b^{2} c^{2} - a b c d + a^{2} d^{2} + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} e^{2} - {\left (2 \, b^{2} c^{2} - 3 \, a b c d + a^{2} d^{2}\right )} e\right )}}{3 \, {\left (b^{2} d^{2} e^{2} - 2 \, b^{2} d^{2} e + b^{2} d^{2}\right )}}, \frac {4 \, {\left (2 \, b^{3} c^{3} - 3 \, a b^{2} c^{2} d - 3 \, a^{2} b c d^{2} + 2 \, a^{3} d^{3} - 2 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} e^{3} + 3 \, {\left (2 \, b^{3} c^{3} - 5 \, a b^{2} c^{2} d + 4 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} e^{2} - 3 \, {\left (2 \, b^{3} c^{3} - 4 \, a b^{2} c^{2} d + a^{2} b c d^{2} + a^{3} d^{3}\right )} e\right )}}{27 \, {\left (b^{3} d^{3} e^{3} - 3 \, b^{3} d^{3} e^{2} + 3 \, b^{3} d^{3} e - b^{3} d^{3}\right )}}, -\frac {b c + a d - {\left (b c + 2 \, a d\right )} e - 3 \, {\left (b d e - b d\right )} x}{3 \, {\left (b d e - b d\right )}}\right )}{b^{2} d e - b^{2} d} \] Input:

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(1/2)/(e+b*(-1+e)*x/a)^(1/2),x, algorith 
m="fricas")
 

Output:

2*a*sqrt((b^2*d*e - b^2*d)/a)*weierstrassPInverse(4/3*(b^2*c^2 - a*b*c*d + 
 a^2*d^2 + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*e^2 - (2*b^2*c^2 - 3*a*b*c*d + 
a^2*d^2)*e)/(b^2*d^2*e^2 - 2*b^2*d^2*e + b^2*d^2), 4/27*(2*b^3*c^3 - 3*a*b 
^2*c^2*d - 3*a^2*b*c*d^2 + 2*a^3*d^3 - 2*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2* 
b*c*d^2 - a^3*d^3)*e^3 + 3*(2*b^3*c^3 - 5*a*b^2*c^2*d + 4*a^2*b*c*d^2 - a^ 
3*d^3)*e^2 - 3*(2*b^3*c^3 - 4*a*b^2*c^2*d + a^2*b*c*d^2 + a^3*d^3)*e)/(b^3 
*d^3*e^3 - 3*b^3*d^3*e^2 + 3*b^3*d^3*e - b^3*d^3), -1/3*(b*c + a*d - (b*c 
+ 2*a*d)*e - 3*(b*d*e - b*d)*x)/(b*d*e - b*d))/(b^2*d*e - b^2*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=\int \frac {1}{\sqrt {a + b x} \sqrt {c + d x} \sqrt {e + \frac {b e x}{a} - \frac {b x}{a}}}\, dx \] Input:

integrate(1/(b*x+a)**(1/2)/(d*x+c)**(1/2)/(e+b*(-1+e)*x/a)**(1/2),x)
                                                                                    
                                                                                    
 

Output:

Integral(1/(sqrt(a + b*x)*sqrt(c + d*x)*sqrt(e + b*e*x/a - b*x/a)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=\int { \frac {1}{\sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {b {\left (e - 1\right )} x}{a} + e}} \,d x } \] Input:

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(1/2)/(e+b*(-1+e)*x/a)^(1/2),x, algorith 
m="maxima")
 

Output:

integrate(1/(sqrt(b*x + a)*sqrt(d*x + c)*sqrt(b*(e - 1)*x/a + e)), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=\int { \frac {1}{\sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {b {\left (e - 1\right )} x}{a} + e}} \,d x } \] Input:

integrate(1/(b*x+a)^(1/2)/(d*x+c)^(1/2)/(e+b*(-1+e)*x/a)^(1/2),x, algorith 
m="giac")
 

Output:

integrate(1/(sqrt(b*x + a)*sqrt(d*x + c)*sqrt(b*(e - 1)*x/a + e)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=\int \frac {1}{\sqrt {e+\frac {b\,x\,\left (e-1\right )}{a}}\,\sqrt {a+b\,x}\,\sqrt {c+d\,x}} \,d x \] Input:

int(1/((e + (b*x*(e - 1))/a)^(1/2)*(a + b*x)^(1/2)*(c + d*x)^(1/2)),x)
 

Output:

int(1/((e + (b*x*(e - 1))/a)^(1/2)*(a + b*x)^(1/2)*(c + d*x)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x} \sqrt {e+\frac {b (-1+e) x}{a}}} \, dx=\sqrt {a}\, \left (\int \frac {\sqrt {d x +c}\, \sqrt {b x +a}\, \sqrt {b e x +a e -b x}}{b^{2} d e \,x^{3}+2 a b d e \,x^{2}+b^{2} c e \,x^{2}-b^{2} d \,x^{3}+a^{2} d e x +2 a b c e x -a b d \,x^{2}-b^{2} c \,x^{2}+a^{2} c e -a b c x}d x \right ) \] Input:

int(1/(b*x+a)^(1/2)/(d*x+c)^(1/2)/(e+b*(-1+e)*x/a)^(1/2),x)
 

Output:

sqrt(a)*int((sqrt(c + d*x)*sqrt(a + b*x)*sqrt(a*e + b*e*x - b*x))/(a**2*c* 
e + a**2*d*e*x + 2*a*b*c*e*x - a*b*c*x + 2*a*b*d*e*x**2 - a*b*d*x**2 + b** 
2*c*e*x**2 - b**2*c*x**2 + b**2*d*e*x**3 - b**2*d*x**3),x)