\(\int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx\) [1257]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 98 \[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\frac {2}{9} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}-\frac {37}{27} \sqrt {\frac {7}{5}} E\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )|\frac {33}{35}\right )+\frac {4}{27} \sqrt {\frac {7}{5}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ),\frac {33}{35}\right ) \] Output:

2/9*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)-37/135*EllipticE(1/11*55^(1/ 
2)*(1-2*x)^(1/2),1/35*1155^(1/2))*35^(1/2)+4/135*EllipticF(1/11*55^(1/2)*( 
1-2*x)^(1/2),1/35*1155^(1/2))*35^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.96 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\frac {1}{135} \left (30 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+37 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-35 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right ) \] Input:

Integrate[(Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/Sqrt[2 + 3*x],x]
 

Output:

(30*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] + (37*I)*Sqrt[33]*EllipticE[ 
I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (35*I)*Sqrt[33]*EllipticF[I*ArcSinh[Sq 
rt[9 + 15*x]], -2/33])/135
 

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {112, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-2 x} \sqrt {5 x+3}}{\sqrt {3 x+2}} \, dx\)

\(\Big \downarrow \) 112

\(\displaystyle \frac {2}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}-\frac {2}{9} \int -\frac {37 x+20}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \frac {37 x+20}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {2}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{9} \left (\frac {37}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx-\frac {11}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx\right )+\frac {2}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{9} \left (-\frac {11}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {37}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {2}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{9} \left (\frac {2}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {37}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {2}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

Input:

Int[(Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/Sqrt[2 + 3*x],x]
 

Output:

(2*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/9 + ((-37*Sqrt[11/3]*Ellipti 
cE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 + (2*Sqrt[11/3]*EllipticF[Ar 
cSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5)/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 112
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^m*(c + d*x)^n*((e + f*x)^(p + 1)/(f*(m + n + 
p + 1))), x] - Simp[1/(f*(m + n + p + 1))   Int[(a + b*x)^(m - 1)*(c + d*x) 
^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a 
*f) + b*n*(d*e - c*f))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && 
GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (IntegersQ[2*m, 2*n, 2*p 
] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
Maple [A] (verified)

Time = 0.37 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.41

method result size
default \(\frac {\sqrt {1-2 x}\, \sqrt {3+5 x}\, \sqrt {2+3 x}\, \left (33 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+37 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+900 x^{3}+690 x^{2}-210 x -180\right )}{4050 x^{3}+3105 x^{2}-945 x -810}\) \(138\)
elliptic \(\frac {\sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (\frac {2 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{9}+\frac {20 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{189 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {37 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{189 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(192\)
risch \(-\frac {2 \sqrt {3+5 x}\, \left (-1+2 x \right ) \sqrt {2+3 x}\, \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{9 \sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \sqrt {1-2 x}}-\frac {\left (-\frac {4 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, \operatorname {EllipticF}\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{99 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {37 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, \left (\frac {\operatorname {EllipticE}\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{15}-\frac {2 \operatorname {EllipticF}\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{3}\right )}{495 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right ) \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(242\)

Input:

int((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/135*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(33*2^(1/2)*(2+3*x)^(1/2)* 
(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))+3 
7*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/7*(28+42* 
x)^(1/2),1/2*70^(1/2))+900*x^3+690*x^2-210*x-180)/(30*x^3+23*x^2-7*x-6)
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.50 \[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\frac {2}{9} \, \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - \frac {949}{12150} \, \sqrt {-30} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + \frac {37}{135} \, \sqrt {-30} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right ) \] Input:

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="fricas")
 

Output:

2/9*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) - 949/12150*sqrt(-30)*weier 
strassPInverse(1159/675, 38998/91125, x + 23/90) + 37/135*sqrt(-30)*weiers 
trassZeta(1159/675, 38998/91125, weierstrassPInverse(1159/675, 38998/91125 
, x + 23/90))
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\int \frac {\sqrt {1 - 2 x} \sqrt {5 x + 3}}{\sqrt {3 x + 2}}\, dx \] Input:

integrate((1-2*x)**(1/2)*(3+5*x)**(1/2)/(2+3*x)**(1/2),x)
 

Output:

Integral(sqrt(1 - 2*x)*sqrt(5*x + 3)/sqrt(3*x + 2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\int { \frac {\sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{\sqrt {3 \, x + 2}} \,d x } \] Input:

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(5*x + 3)*sqrt(-2*x + 1)/sqrt(3*x + 2), x)
 

Giac [F]

\[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\int { \frac {\sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{\sqrt {3 \, x + 2}} \,d x } \] Input:

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(5*x + 3)*sqrt(-2*x + 1)/sqrt(3*x + 2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\int \frac {\sqrt {1-2\,x}\,\sqrt {5\,x+3}}{\sqrt {3\,x+2}} \,d x \] Input:

int(((1 - 2*x)^(1/2)*(5*x + 3)^(1/2))/(3*x + 2)^(1/2),x)
 

Output:

int(((1 - 2*x)^(1/2)*(5*x + 3)^(1/2))/(3*x + 2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}} \, dx=\frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{23}+\frac {185 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{30 x^{3}+23 x^{2}-7 x -6}d x \right )}{23}-\frac {131 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{30 x^{3}+23 x^{2}-7 x -6}d x \right )}{46} \] Input:

int((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2),x)
 

Output:

(2*sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1) + 370*int((sqrt(3*x + 2)*s 
qrt(5*x + 3)*sqrt( - 2*x + 1)*x**2)/(30*x**3 + 23*x**2 - 7*x - 6),x) - 131 
*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1))/(30*x**3 + 23*x**2 - 7 
*x - 6),x))/46