\(\int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx\) [1419]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 129 \[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=-\frac {22 (1-2 x)^{3/2} \sqrt {2+3 x}}{15 (3+5 x)^{3/2}}+\frac {572 \sqrt {1-2 x} \sqrt {2+3 x}}{25 \sqrt {3+5 x}}-\frac {584}{25} \sqrt {\frac {7}{5}} E\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )|\frac {33}{35}\right )+\frac {12}{25} \sqrt {\frac {7}{5}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ),\frac {33}{35}\right ) \] Output:

-22/15*(1-2*x)^(3/2)*(2+3*x)^(1/2)/(3+5*x)^(3/2)+572/25*(1-2*x)^(1/2)*(2+3 
*x)^(1/2)/(3+5*x)^(1/2)-584/125*EllipticE(1/11*55^(1/2)*(1-2*x)^(1/2),1/35 
*1155^(1/2))*35^(1/2)+12/125*EllipticF(1/11*55^(1/2)*(1-2*x)^(1/2),1/35*11 
55^(1/2))*35^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 7.10 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.72 \[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=\frac {2}{375} \left (\frac {55 \sqrt {1-2 x} \sqrt {2+3 x} (229+400 x)}{(3+5 x)^{3/2}}+876 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-910 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right ) \] Input:

Integrate[(1 - 2*x)^(5/2)/(Sqrt[2 + 3*x]*(3 + 5*x)^(5/2)),x]
 

Output:

(2*((55*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(229 + 400*x))/(3 + 5*x)^(3/2) + (876* 
I)*Sqrt[33]*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (910*I)*Sqrt[33] 
*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33]))/375
 

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.06, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {109, 27, 167, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{5/2}}{\sqrt {3 x+2} (5 x+3)^{5/2}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle -\frac {2}{15} \int \frac {3 \sqrt {1-2 x} (9 x+34)}{\sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {22 \sqrt {3 x+2} (1-2 x)^{3/2}}{15 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2}{5} \int \frac {\sqrt {1-2 x} (9 x+34)}{\sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {22 \sqrt {3 x+2} (1-2 x)^{3/2}}{15 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 167

\(\displaystyle -\frac {2}{5} \left (\frac {2}{5} \int -\frac {876 x+563}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {286 \sqrt {1-2 x} \sqrt {3 x+2}}{5 \sqrt {5 x+3}}\right )-\frac {22 \sqrt {3 x+2} (1-2 x)^{3/2}}{15 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2}{5} \left (-\frac {1}{5} \int \frac {876 x+563}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {286 \sqrt {1-2 x} \sqrt {3 x+2}}{5 \sqrt {5 x+3}}\right )-\frac {22 \sqrt {3 x+2} (1-2 x)^{3/2}}{15 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 176

\(\displaystyle -\frac {2}{5} \left (\frac {1}{5} \left (-\frac {187}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {876}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {286 \sqrt {1-2 x} \sqrt {3 x+2}}{5 \sqrt {5 x+3}}\right )-\frac {22 \sqrt {3 x+2} (1-2 x)^{3/2}}{15 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle -\frac {2}{5} \left (\frac {1}{5} \left (\frac {292}{5} \sqrt {33} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {187}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx\right )-\frac {286 \sqrt {1-2 x} \sqrt {3 x+2}}{5 \sqrt {5 x+3}}\right )-\frac {22 \sqrt {3 x+2} (1-2 x)^{3/2}}{15 (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 129

\(\displaystyle -\frac {2}{5} \left (\frac {1}{5} \left (\frac {34}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )+\frac {292}{5} \sqrt {33} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {286 \sqrt {1-2 x} \sqrt {3 x+2}}{5 \sqrt {5 x+3}}\right )-\frac {22 \sqrt {3 x+2} (1-2 x)^{3/2}}{15 (5 x+3)^{3/2}}\)

Input:

Int[(1 - 2*x)^(5/2)/(Sqrt[2 + 3*x]*(3 + 5*x)^(5/2)),x]
 

Output:

(-22*(1 - 2*x)^(3/2)*Sqrt[2 + 3*x])/(15*(3 + 5*x)^(3/2)) - (2*((-286*Sqrt[ 
1 - 2*x]*Sqrt[2 + 3*x])/(5*Sqrt[3 + 5*x]) + ((292*Sqrt[33]*EllipticE[ArcSi 
n[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 + (34*Sqrt[11/3]*EllipticF[ArcSin[Sq 
rt[3/7]*Sqrt[1 - 2*x]], 35/33])/5)/5))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 167
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b*e - 
a*f)*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b* 
c*(f*g - e*h)*(m + 1) + (b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h 
)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d, 
e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(214\) vs. \(2(93)=186\).

Time = 0.58 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.67

method result size
default \(-\frac {2 \left (2805 \sqrt {2}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}-4380 \sqrt {2}\, \operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}+1683 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )-2628 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )-132000 x^{3}-97570 x^{2}+31405 x +25190\right ) \sqrt {2+3 x}\, \sqrt {1-2 x}}{375 \left (6 x^{2}+x -2\right ) \left (3+5 x \right )^{\frac {3}{2}}}\) \(215\)
elliptic \(\frac {\sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (\frac {1126 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{525 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {584 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{175 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {242 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{1875 \left (x +\frac {3}{5}\right )^{2}}+\frac {-\frac {704}{5} x^{2}-\frac {352}{15} x +\frac {704}{15}}{\sqrt {\left (x +\frac {3}{5}\right ) \left (-30 x^{2}-5 x +10\right )}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(225\)

Input:

int((1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2/375*(2805*2^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))*x*(2+3*x) 
^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)-4380*2^(1/2)*EllipticE(1/7*(28+42*x)^( 
1/2),1/2*70^(1/2))*x*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)+1683*2^(1/ 
2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/7*(28+42*x)^(1/2 
),1/2*70^(1/2))-2628*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*El 
lipticE(1/7*(28+42*x)^(1/2),1/2*70^(1/2))-132000*x^3-97570*x^2+31405*x+251 
90)*(2+3*x)^(1/2)*(1-2*x)^(1/2)/(6*x^2+x-2)/(3+5*x)^(3/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.68 \[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=\frac {2 \, {\left (825 \, {\left (400 \, x + 229\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - 5087 \, \sqrt {-30} {\left (25 \, x^{2} + 30 \, x + 9\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 13140 \, \sqrt {-30} {\left (25 \, x^{2} + 30 \, x + 9\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )\right )}}{5625 \, {\left (25 \, x^{2} + 30 \, x + 9\right )}} \] Input:

integrate((1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(5/2),x, algorithm="fricas")
 

Output:

2/5625*(825*(400*x + 229)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) - 508 
7*sqrt(-30)*(25*x^2 + 30*x + 9)*weierstrassPInverse(1159/675, 38998/91125, 
 x + 23/90) + 13140*sqrt(-30)*(25*x^2 + 30*x + 9)*weierstrassZeta(1159/675 
, 38998/91125, weierstrassPInverse(1159/675, 38998/91125, x + 23/90)))/(25 
*x^2 + 30*x + 9)
 

Sympy [F]

\[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=\int \frac {\left (1 - 2 x\right )^{\frac {5}{2}}}{\sqrt {3 x + 2} \left (5 x + 3\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((1-2*x)**(5/2)/(2+3*x)**(1/2)/(3+5*x)**(5/2),x)
 

Output:

Integral((1 - 2*x)**(5/2)/(sqrt(3*x + 2)*(5*x + 3)**(5/2)), x)
 

Maxima [F]

\[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {5}{2}}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {3 \, x + 2}} \,d x } \] Input:

integrate((1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(5/2),x, algorithm="maxima")
 

Output:

integrate((-2*x + 1)^(5/2)/((5*x + 3)^(5/2)*sqrt(3*x + 2)), x)
 

Giac [F]

\[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {5}{2}}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {3 \, x + 2}} \,d x } \] Input:

integrate((1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(5/2),x, algorithm="giac")
 

Output:

integrate((-2*x + 1)^(5/2)/((5*x + 3)^(5/2)*sqrt(3*x + 2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=\int \frac {{\left (1-2\,x\right )}^{5/2}}{\sqrt {3\,x+2}\,{\left (5\,x+3\right )}^{5/2}} \,d x \] Input:

int((1 - 2*x)^(5/2)/((3*x + 2)^(1/2)*(5*x + 3)^(5/2)),x)
 

Output:

int((1 - 2*x)^(5/2)/((3*x + 2)^(1/2)*(5*x + 3)^(5/2)), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {(1-2 x)^{5/2}}{\sqrt {2+3 x} (3+5 x)^{5/2}} \, dx=\frac {104 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x +14 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}-146850 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{750 x^{5}+1475 x^{4}+785 x^{3}-153 x^{2}-243 x -54}d x \right ) x^{2}-176220 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{750 x^{5}+1475 x^{4}+785 x^{3}-153 x^{2}-243 x -54}d x \right ) x -52866 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{750 x^{5}+1475 x^{4}+785 x^{3}-153 x^{2}-243 x -54}d x \right )+4950 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{750 x^{5}+1475 x^{4}+785 x^{3}-153 x^{2}-243 x -54}d x \right ) x^{2}+5940 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{750 x^{5}+1475 x^{4}+785 x^{3}-153 x^{2}-243 x -54}d x \right ) x +1782 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{750 x^{5}+1475 x^{4}+785 x^{3}-153 x^{2}-243 x -54}d x \right )}{4875 x^{2}+5850 x +1755} \] Input:

int((1-2*x)^(5/2)/(2+3*x)^(1/2)/(3+5*x)^(5/2),x)
 

Output:

(2*(52*sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x + 7*sqrt(3*x + 2)*sq 
rt(5*x + 3)*sqrt( - 2*x + 1) - 73425*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt 
( - 2*x + 1)*x**2)/(750*x**5 + 1475*x**4 + 785*x**3 - 153*x**2 - 243*x - 5 
4),x)*x**2 - 88110*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x**2) 
/(750*x**5 + 1475*x**4 + 785*x**3 - 153*x**2 - 243*x - 54),x)*x - 26433*in 
t((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x**2)/(750*x**5 + 1475*x** 
4 + 785*x**3 - 153*x**2 - 243*x - 54),x) + 2475*int((sqrt(3*x + 2)*sqrt(5* 
x + 3)*sqrt( - 2*x + 1))/(750*x**5 + 1475*x**4 + 785*x**3 - 153*x**2 - 243 
*x - 54),x)*x**2 + 2970*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)) 
/(750*x**5 + 1475*x**4 + 785*x**3 - 153*x**2 - 243*x - 54),x)*x + 891*int( 
(sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1))/(750*x**5 + 1475*x**4 + 785 
*x**3 - 153*x**2 - 243*x - 54),x)))/(195*(25*x**2 + 30*x + 9))