\(\int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx\) [1515]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 122 \[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\frac {10}{3} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{\sqrt {1-2 x}}+\frac {133}{18} \sqrt {35} E\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )|\frac {33}{35}\right )-\frac {67 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ),\frac {33}{35}\right )}{9 \sqrt {35}} \] Output:

10/3*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)+(2+3*x)^(1/2)*(3+5*x)^(3/2) 
/(1-2*x)^(1/2)+133/18*EllipticE(1/11*55^(1/2)*(1-2*x)^(1/2),1/35*1155^(1/2 
))*35^(1/2)-67/315*EllipticF(1/11*55^(1/2)*(1-2*x)^(1/2),1/35*1155^(1/2))* 
35^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.36 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.83 \[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\frac {6 (19-5 x) \sqrt {2+3 x} \sqrt {3+5 x}-133 i \sqrt {33-66 x} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )+137 i \sqrt {33-66 x} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )}{18 \sqrt {1-2 x}} \] Input:

Integrate[(Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/(1 - 2*x)^(3/2),x]
 

Output:

(6*(19 - 5*x)*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] - (133*I)*Sqrt[33 - 66*x]*Ellipt 
icE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] + (137*I)*Sqrt[33 - 66*x]*EllipticF[ 
I*ArcSinh[Sqrt[9 + 15*x]], -2/33])/(18*Sqrt[1 - 2*x])
 

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {108, 27, 171, 25, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{(1-2 x)^{3/2}} \, dx\)

\(\Big \downarrow \) 108

\(\displaystyle \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}-\int \frac {3 \sqrt {5 x+3} (20 x+13)}{2 \sqrt {1-2 x} \sqrt {3 x+2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}-\frac {3}{2} \int \frac {\sqrt {5 x+3} (20 x+13)}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}-\frac {3}{2} \left (-\frac {1}{9} \int -\frac {665 x+421}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {20}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}-\frac {3}{2} \left (\frac {1}{9} \int \frac {665 x+421}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {20}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}-\frac {3}{2} \left (\frac {1}{9} \left (22 \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+133 \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {20}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}-\frac {3}{2} \left (\frac {1}{9} \left (22 \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-133 \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {20}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {\sqrt {3 x+2} (5 x+3)^{3/2}}{\sqrt {1-2 x}}-\frac {3}{2} \left (\frac {1}{9} \left (-4 \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-133 \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {20}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\)

Input:

Int[(Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/(1 - 2*x)^(3/2),x]
 

Output:

(Sqrt[2 + 3*x]*(3 + 5*x)^(3/2))/Sqrt[1 - 2*x] - (3*((-20*Sqrt[1 - 2*x]*Sqr 
t[2 + 3*x]*Sqrt[3 + 5*x])/9 + (-133*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]* 
Sqrt[1 - 2*x]], 35/33] - 4*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 
2*x]], 35/33])/9))/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 108
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))) 
, x] - Simp[1/(b*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f* 
x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2 
*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.13

method result size
default \(\frac {\sqrt {2+3 x}\, \sqrt {3+5 x}\, \sqrt {1-2 x}\, \left (66 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )-133 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+450 x^{3}-1140 x^{2}-1986 x -684\right )}{540 x^{3}+414 x^{2}-126 x -108}\) \(138\)
elliptic \(\frac {\sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (-\frac {11 \left (-30 x^{2}-38 x -12\right )}{4 \sqrt {\left (x -\frac {1}{2}\right ) \left (-30 x^{2}-38 x -12\right )}}-\frac {421 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{126 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {95 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{18 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {5 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{6}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(220\)

Input:

int((2+3*x)^(1/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/18*(2+3*x)^(1/2)*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(66*2^(1/2)*(2+3*x)^(1/2)*( 
-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))-13 
3*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/7*(28+42* 
x)^(1/2),1/2*70^(1/2))+450*x^3-1140*x^2-1986*x-684)/(30*x^3+23*x^2-7*x-6)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.60 \[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\frac {540 \, \sqrt {5 \, x + 3} {\left (5 \, x - 19\right )} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} + 4519 \, \sqrt {-30} {\left (2 \, x - 1\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) - 11970 \, \sqrt {-30} {\left (2 \, x - 1\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{1620 \, {\left (2 \, x - 1\right )}} \] Input:

integrate((2+3*x)^(1/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x, algorithm="fricas")
 

Output:

1/1620*(540*sqrt(5*x + 3)*(5*x - 19)*sqrt(3*x + 2)*sqrt(-2*x + 1) + 4519*s 
qrt(-30)*(2*x - 1)*weierstrassPInverse(1159/675, 38998/91125, x + 23/90) - 
 11970*sqrt(-30)*(2*x - 1)*weierstrassZeta(1159/675, 38998/91125, weierstr 
assPInverse(1159/675, 38998/91125, x + 23/90)))/(2*x - 1)
 

Sympy [F]

\[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\int \frac {\sqrt {3 x + 2} \left (5 x + 3\right )^{\frac {3}{2}}}{\left (1 - 2 x\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((2+3*x)**(1/2)*(3+5*x)**(3/2)/(1-2*x)**(3/2),x)
 

Output:

Integral(sqrt(3*x + 2)*(5*x + 3)**(3/2)/(1 - 2*x)**(3/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}} \sqrt {3 \, x + 2}}{{\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((2+3*x)^(1/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x, algorithm="maxima")
 

Output:

integrate((5*x + 3)^(3/2)*sqrt(3*x + 2)/(-2*x + 1)^(3/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}} \sqrt {3 \, x + 2}}{{\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((2+3*x)^(1/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x, algorithm="giac")
 

Output:

integrate((5*x + 3)^(3/2)*sqrt(3*x + 2)/(-2*x + 1)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\int \frac {\sqrt {3\,x+2}\,{\left (5\,x+3\right )}^{3/2}}{{\left (1-2\,x\right )}^{3/2}} \,d x \] Input:

int(((3*x + 2)^(1/2)*(5*x + 3)^(3/2))/(1 - 2*x)^(3/2),x)
 

Output:

int(((3*x + 2)^(1/2)*(5*x + 3)^(3/2))/(1 - 2*x)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {2+3 x} (3+5 x)^{3/2}}{(1-2 x)^{3/2}} \, dx=\frac {100 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x -498 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}+30140 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right ) x -15070 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right )-12078 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right ) x +6039 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right )}{120 x -60} \] Input:

int((2+3*x)^(1/2)*(3+5*x)^(3/2)/(1-2*x)^(3/2),x)
 

Output:

(100*sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x - 498*sqrt(3*x + 2)*sq 
rt(5*x + 3)*sqrt( - 2*x + 1) + 30140*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt 
( - 2*x + 1)*x**2)/(60*x**4 + 16*x**3 - 37*x**2 - 5*x + 6),x)*x - 15070*in 
t((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x**2)/(60*x**4 + 16*x**3 - 
 37*x**2 - 5*x + 6),x) - 12078*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2* 
x + 1))/(60*x**4 + 16*x**3 - 37*x**2 - 5*x + 6),x)*x + 6039*int((sqrt(3*x 
+ 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1))/(60*x**4 + 16*x**3 - 37*x**2 - 5*x + 
6),x))/(60*(2*x - 1))