\(\int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx\) [1523]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 184 \[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\frac {1762}{21} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {265}{14} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}+\frac {20}{7} \sqrt {1-2 x} (2+3 x)^{3/2} (3+5 x)^{3/2}+\frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{\sqrt {1-2 x}}+\frac {244879 E\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )|\frac {33}{35}\right )}{36 \sqrt {35}}-\frac {1762 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ),\frac {33}{35}\right )}{9 \sqrt {35}} \] Output:

1762/21*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)+265/14*(1-2*x)^(1/2)*(2+ 
3*x)^(3/2)*(3+5*x)^(1/2)+20/7*(1-2*x)^(1/2)*(2+3*x)^(3/2)*(3+5*x)^(3/2)+(2 
+3*x)^(3/2)*(3+5*x)^(5/2)/(1-2*x)^(1/2)+244879/1260*EllipticE(1/11*55^(1/2 
)*(1-2*x)^(1/2),1/35*1155^(1/2))*35^(1/2)-1762/315*EllipticF(1/11*55^(1/2) 
*(1-2*x)^(1/2),1/35*1155^(1/2))*35^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.65 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.60 \[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\frac {-30 \sqrt {2+3 x} \sqrt {3+5 x} \left (-6590+3349 x+1650 x^2+450 x^3\right )-244879 i \sqrt {33-66 x} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )+252245 i \sqrt {33-66 x} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )}{1260 \sqrt {1-2 x}} \] Input:

Integrate[((2 + 3*x)^(3/2)*(3 + 5*x)^(5/2))/(1 - 2*x)^(3/2),x]
 

Output:

(-30*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(-6590 + 3349*x + 1650*x^2 + 450*x^3) - ( 
244879*I)*Sqrt[33 - 66*x]*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] + (2 
52245*I)*Sqrt[33 - 66*x]*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])/(126 
0*Sqrt[1 - 2*x])
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.12, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {108, 27, 171, 27, 171, 27, 171, 25, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{(1-2 x)^{3/2}} \, dx\)

\(\Big \downarrow \) 108

\(\displaystyle \frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}-\int \frac {\sqrt {3 x+2} (5 x+3)^{3/2} (120 x+77)}{2 \sqrt {1-2 x}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}-\frac {1}{2} \int \frac {\sqrt {3 x+2} (5 x+3)^{3/2} (120 x+77)}{\sqrt {1-2 x}}dx\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {1}{2} \left (\frac {1}{35} \int -\frac {5 (5 x+3)^{3/2} (2505 x+1642)}{\sqrt {1-2 x} \sqrt {3 x+2}}dx+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}-\frac {1}{7} \int \frac {(5 x+3)^{3/2} (2505 x+1642)}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {1}{2} \left (\frac {1}{7} \left (\frac {1}{15} \int -\frac {45 \sqrt {5 x+3} (7366 x+4787)}{2 \sqrt {1-2 x} \sqrt {3 x+2}}dx+167 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}\right )+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {1}{7} \left (167 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {3}{2} \int \frac {\sqrt {5 x+3} (7366 x+4787)}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {1}{2} \left (\frac {1}{7} \left (167 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {3}{2} \left (-\frac {1}{9} \int -\frac {244879 x+155030}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {7366}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\right )+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {1}{7} \left (167 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {3}{2} \left (\frac {1}{9} \int \frac {244879 x+155030}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {7366}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\right )+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{2} \left (\frac {1}{7} \left (167 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {3}{2} \left (\frac {1}{9} \left (\frac {40513}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {244879}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {7366}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\right )+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{2} \left (\frac {1}{7} \left (167 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {3}{2} \left (\frac {1}{9} \left (\frac {40513}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {244879}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {7366}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\right )+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{2} \left (\frac {1}{7} \left (167 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}-\frac {3}{2} \left (\frac {1}{9} \left (-\frac {7366}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {244879}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {7366}{9} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )\right )+\frac {24}{7} \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}\right )+\frac {(3 x+2)^{3/2} (5 x+3)^{5/2}}{\sqrt {1-2 x}}\)

Input:

Int[((2 + 3*x)^(3/2)*(3 + 5*x)^(5/2))/(1 - 2*x)^(3/2),x]
 

Output:

((2 + 3*x)^(3/2)*(3 + 5*x)^(5/2))/Sqrt[1 - 2*x] + ((24*Sqrt[1 - 2*x]*Sqrt[ 
2 + 3*x]*(3 + 5*x)^(5/2))/7 + (167*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*(3 + 5*x)^( 
3/2) - (3*((-7366*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/9 + ((-244879 
*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 - (7366*S 
qrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5)/9))/2)/7)/ 
2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 108
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))) 
, x] - Simp[1/(b*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f* 
x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2 
*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.80

method result size
default \(\frac {\sqrt {2+3 x}\, \sqrt {3+5 x}\, \sqrt {1-2 x}\, \left (121539 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )-244879 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+202500 x^{5}+999000 x^{4}+2528550 x^{3}-759570 x^{2}-3153480 x -1186200\right )}{37800 x^{3}+28980 x^{2}-8820 x -7560}\) \(148\)
elliptic \(\frac {\sqrt {3+5 x}\, \sqrt {2+3 x}\, \sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (\frac {625 x \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{28}+\frac {8573 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{168}-\frac {77515 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{882 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {244879 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{1764 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {75 x^{2} \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{14}-\frac {847 \left (-30 x^{2}-38 x -12\right )}{16 \sqrt {\left (x -\frac {1}{2}\right ) \left (-30 x^{2}-38 x -12\right )}}\right )}{\left (15 x^{2}+19 x +6\right ) \sqrt {1-2 x}}\) \(274\)

Input:

int((2+3*x)^(3/2)*(3+5*x)^(5/2)/(1-2*x)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/1260*(2+3*x)^(1/2)*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(121539*2^(1/2)*(2+3*x)^( 
1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/ 
2))-244879*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/ 
7*(28+42*x)^(1/2),1/2*70^(1/2))+202500*x^5+999000*x^4+2528550*x^3-759570*x 
^2-3153480*x-1186200)/(30*x^3+23*x^2-7*x-6)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.45 \[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\frac {2700 \, {\left (450 \, x^{3} + 1650 \, x^{2} + 3349 \, x - 6590\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} + 8320483 \, \sqrt {-30} {\left (2 \, x - 1\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) - 22039110 \, \sqrt {-30} {\left (2 \, x - 1\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{113400 \, {\left (2 \, x - 1\right )}} \] Input:

integrate((2+3*x)^(3/2)*(3+5*x)^(5/2)/(1-2*x)^(3/2),x, algorithm="fricas")
 

Output:

1/113400*(2700*(450*x^3 + 1650*x^2 + 3349*x - 6590)*sqrt(5*x + 3)*sqrt(3*x 
 + 2)*sqrt(-2*x + 1) + 8320483*sqrt(-30)*(2*x - 1)*weierstrassPInverse(115 
9/675, 38998/91125, x + 23/90) - 22039110*sqrt(-30)*(2*x - 1)*weierstrassZ 
eta(1159/675, 38998/91125, weierstrassPInverse(1159/675, 38998/91125, x + 
23/90)))/(2*x - 1)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((2+3*x)**(3/2)*(3+5*x)**(5/2)/(1-2*x)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}}}{{\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((2+3*x)^(3/2)*(3+5*x)^(5/2)/(1-2*x)^(3/2),x, algorithm="maxima")
 

Output:

integrate((5*x + 3)^(5/2)*(3*x + 2)^(3/2)/(-2*x + 1)^(3/2), x)
 

Giac [F]

\[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (3 \, x + 2\right )}^{\frac {3}{2}}}{{\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((2+3*x)^(3/2)*(3+5*x)^(5/2)/(1-2*x)^(3/2),x, algorithm="giac")
 

Output:

integrate((5*x + 3)^(5/2)*(3*x + 2)^(3/2)/(-2*x + 1)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\int \frac {{\left (3\,x+2\right )}^{3/2}\,{\left (5\,x+3\right )}^{5/2}}{{\left (1-2\,x\right )}^{3/2}} \,d x \] Input:

int(((3*x + 2)^(3/2)*(5*x + 3)^(5/2))/(1 - 2*x)^(3/2),x)
 

Output:

int(((3*x + 2)^(3/2)*(5*x + 3)^(5/2))/(1 - 2*x)^(3/2), x)
 

Reduce [F]

\[ \int \frac {(2+3 x)^{3/2} (3+5 x)^{5/2}}{(1-2 x)^{3/2}} \, dx=\frac {9000 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{3}+33000 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}+66980 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x -175254 \sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}+11098780 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right ) x -5549390 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}\, x^{2}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right )-4447674 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right ) x +2223837 \left (\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{60 x^{4}+16 x^{3}-37 x^{2}-5 x +6}d x \right )}{1680 x -840} \] Input:

int((2+3*x)^(3/2)*(3+5*x)^(5/2)/(1-2*x)^(3/2),x)
 

Output:

(9000*sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x**3 + 33000*sqrt(3*x + 
 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x**2 + 66980*sqrt(3*x + 2)*sqrt(5*x + 3 
)*sqrt( - 2*x + 1)*x - 175254*sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1) 
 + 11098780*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1)*x**2)/(60*x* 
*4 + 16*x**3 - 37*x**2 - 5*x + 6),x)*x - 5549390*int((sqrt(3*x + 2)*sqrt(5 
*x + 3)*sqrt( - 2*x + 1)*x**2)/(60*x**4 + 16*x**3 - 37*x**2 - 5*x + 6),x) 
- 4447674*int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1))/(60*x**4 + 16 
*x**3 - 37*x**2 - 5*x + 6),x)*x + 2223837*int((sqrt(3*x + 2)*sqrt(5*x + 3) 
*sqrt( - 2*x + 1))/(60*x**4 + 16*x**3 - 37*x**2 - 5*x + 6),x))/(840*(2*x - 
 1))