\(\int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx\) [1553]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 156 \[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {2 \sqrt {2+3 x}}{11 \sqrt {1-2 x} (3+5 x)^{3/2}}-\frac {40 \sqrt {1-2 x} \sqrt {2+3 x}}{363 (3+5 x)^{3/2}}-\frac {490 \sqrt {1-2 x} \sqrt {2+3 x}}{3993 \sqrt {3+5 x}}+\frac {98 \sqrt {35} E\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )|\frac {33}{35}\right )}{3993}-\frac {724 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ),\frac {33}{35}\right )}{3993 \sqrt {35}} \] Output:

2/11*(2+3*x)^(1/2)/(1-2*x)^(1/2)/(3+5*x)^(3/2)-40/363*(1-2*x)^(1/2)*(2+3*x 
)^(1/2)/(3+5*x)^(3/2)-490/3993*(1-2*x)^(1/2)*(2+3*x)^(1/2)/(3+5*x)^(1/2)+9 
8/3993*EllipticE(1/11*55^(1/2)*(1-2*x)^(1/2),1/35*1155^(1/2))*35^(1/2)-724 
/139755*EllipticF(1/11*55^(1/2)*(1-2*x)^(1/2),1/35*1155^(1/2))*35^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.99 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.60 \[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=\frac {2 \left (\frac {\sqrt {2+3 x} \left (-592+685 x+2450 x^2\right )}{\sqrt {1-2 x} (3+5 x)^{3/2}}-i \sqrt {33} \left (49 E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-41 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right )\right )}{3993} \] Input:

Integrate[Sqrt[2 + 3*x]/((1 - 2*x)^(3/2)*(3 + 5*x)^(5/2)),x]
 

Output:

(2*((Sqrt[2 + 3*x]*(-592 + 685*x + 2450*x^2))/(Sqrt[1 - 2*x]*(3 + 5*x)^(3/ 
2)) - I*Sqrt[33]*(49*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - 41*Elli 
pticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])))/3993
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.10, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {110, 27, 169, 27, 169, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {3 x+2}}{(1-2 x)^{3/2} (5 x+3)^{5/2}} \, dx\)

\(\Big \downarrow \) 110

\(\displaystyle \frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}-\frac {2}{11} \int -\frac {45 x+31}{2 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{11} \int \frac {45 x+31}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{5/2}}dx+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {1}{11} \left (-\frac {2}{33} \int -\frac {120 x+121}{2 \sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {40 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{11} \left (\frac {1}{33} \int \frac {120 x+121}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx-\frac {40 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {1}{11} \left (\frac {1}{33} \left (-\frac {2}{11} \int \frac {3 (245 x+103)}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {490 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {40 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{11} \left (\frac {1}{33} \left (-\frac {6}{11} \int \frac {245 x+103}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {490 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {40 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{11} \left (\frac {1}{33} \left (-\frac {6}{11} \left (49 \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx-44 \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx\right )-\frac {490 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {40 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{11} \left (\frac {1}{33} \left (-\frac {6}{11} \left (-44 \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-49 \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {490 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {40 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{11} \left (\frac {1}{33} \left (-\frac {6}{11} \left (8 \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-49 \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {490 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )-\frac {40 \sqrt {1-2 x} \sqrt {3 x+2}}{33 (5 x+3)^{3/2}}\right )+\frac {2 \sqrt {3 x+2}}{11 \sqrt {1-2 x} (5 x+3)^{3/2}}\)

Input:

Int[Sqrt[2 + 3*x]/((1 - 2*x)^(3/2)*(3 + 5*x)^(5/2)),x]
 

Output:

(2*Sqrt[2 + 3*x])/(11*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2)) + ((-40*Sqrt[1 - 2*x] 
*Sqrt[2 + 3*x])/(33*(3 + 5*x)^(3/2)) + ((-490*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]) 
/(11*Sqrt[3 + 5*x]) - (6*(-49*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 
 - 2*x]], 35/33] + 8*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 
 35/33]))/11)/33)/11
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 110
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[1/((m + 1)*(b*e - a*f))   Int[(a + b*x)^(m + 1) 
*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + 
p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && Gt 
Q[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, 
 m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.38

method result size
default \(-\frac {2 \sqrt {2+3 x}\, \sqrt {1-2 x}\, \left (660 \sqrt {2}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}+245 \sqrt {2}\, \operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right ) x \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}+396 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+147 \sqrt {2}\, \sqrt {2+3 x}\, \sqrt {-3-5 x}\, \sqrt {1-2 x}\, \operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )+7350 x^{3}+6955 x^{2}-406 x -1184\right )}{3993 \left (3+5 x \right )^{\frac {3}{2}} \left (6 x^{2}+x -2\right )}\) \(215\)
elliptic \(\frac {\sqrt {-\left (3+5 x \right ) \left (-1+2 x \right ) \left (2+3 x \right )}\, \left (-\frac {4 \left (-30 x^{2}-38 x -12\right )}{1331 \sqrt {\left (x -\frac {1}{2}\right ) \left (-30 x^{2}-38 x -12\right )}}-\frac {206 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{27951 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {70 \sqrt {28+42 x}\, \sqrt {-15 x -9}\, \sqrt {21-42 x}\, \left (-\frac {\operatorname {EllipticE}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{15}-\frac {3 \operatorname {EllipticF}\left (\frac {\sqrt {28+42 x}}{7}, \frac {\sqrt {70}}{2}\right )}{5}\right )}{3993 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {2 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{1815 \left (x +\frac {3}{5}\right )^{2}}-\frac {86 \left (-30 x^{2}-5 x +10\right )}{3993 \sqrt {\left (x +\frac {3}{5}\right ) \left (-30 x^{2}-5 x +10\right )}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(253\)

Input:

int((2+3*x)^(1/2)/(1-2*x)^(3/2)/(3+5*x)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3993*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(660*2^(1/2)*EllipticF(1/7*(28+42*x)^( 
1/2),1/2*70^(1/2))*x*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)+245*2^(1/2 
)*EllipticE(1/7*(28+42*x)^(1/2),1/2*70^(1/2))*x*(2+3*x)^(1/2)*(-3-5*x)^(1/ 
2)*(1-2*x)^(1/2)+396*2^(1/2)*(2+3*x)^(1/2)*(-3-5*x)^(1/2)*(1-2*x)^(1/2)*El 
lipticF(1/7*(28+42*x)^(1/2),1/2*70^(1/2))+147*2^(1/2)*(2+3*x)^(1/2)*(-3-5* 
x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/7*(28+42*x)^(1/2),1/2*70^(1/2))+7350*x^ 
3+6955*x^2-406*x-1184)/(3+5*x)^(3/2)/(6*x^2+x-2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.69 \[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=-\frac {90 \, {\left (2450 \, x^{2} + 685 \, x - 592\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - 727 \, \sqrt {-30} {\left (50 \, x^{3} + 35 \, x^{2} - 12 \, x - 9\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 4410 \, \sqrt {-30} {\left (50 \, x^{3} + 35 \, x^{2} - 12 \, x - 9\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{179685 \, {\left (50 \, x^{3} + 35 \, x^{2} - 12 \, x - 9\right )}} \] Input:

integrate((2+3*x)^(1/2)/(1-2*x)^(3/2)/(3+5*x)^(5/2),x, algorithm="fricas")
 

Output:

-1/179685*(90*(2450*x^2 + 685*x - 592)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2 
*x + 1) - 727*sqrt(-30)*(50*x^3 + 35*x^2 - 12*x - 9)*weierstrassPInverse(1 
159/675, 38998/91125, x + 23/90) + 4410*sqrt(-30)*(50*x^3 + 35*x^2 - 12*x 
- 9)*weierstrassZeta(1159/675, 38998/91125, weierstrassPInverse(1159/675, 
38998/91125, x + 23/90)))/(50*x^3 + 35*x^2 - 12*x - 9)
 

Sympy [F]

\[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int \frac {\sqrt {3 x + 2}}{\left (1 - 2 x\right )^{\frac {3}{2}} \left (5 x + 3\right )^{\frac {5}{2}}}\, dx \] Input:

integrate((2+3*x)**(1/2)/(1-2*x)**(3/2)/(3+5*x)**(5/2),x)
 

Output:

Integral(sqrt(3*x + 2)/((1 - 2*x)**(3/2)*(5*x + 3)**(5/2)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int { \frac {\sqrt {3 \, x + 2}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((2+3*x)^(1/2)/(1-2*x)^(3/2)/(3+5*x)^(5/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(3*x + 2)/((5*x + 3)^(5/2)*(-2*x + 1)^(3/2)), x)
 

Giac [F]

\[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int { \frac {\sqrt {3 \, x + 2}}{{\left (5 \, x + 3\right )}^{\frac {5}{2}} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((2+3*x)^(1/2)/(1-2*x)^(3/2)/(3+5*x)^(5/2),x, algorithm="giac")
 

Output:

integrate(sqrt(3*x + 2)/((5*x + 3)^(5/2)*(-2*x + 1)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int \frac {\sqrt {3\,x+2}}{{\left (1-2\,x\right )}^{3/2}\,{\left (5\,x+3\right )}^{5/2}} \,d x \] Input:

int((3*x + 2)^(1/2)/((1 - 2*x)^(3/2)*(5*x + 3)^(5/2)),x)
 

Output:

int((3*x + 2)^(1/2)/((1 - 2*x)^(3/2)*(5*x + 3)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {2+3 x}}{(1-2 x)^{3/2} (3+5 x)^{5/2}} \, dx=\int \frac {\sqrt {3 x +2}\, \sqrt {5 x +3}\, \sqrt {-2 x +1}}{500 x^{5}+400 x^{4}-235 x^{3}-207 x^{2}+27 x +27}d x \] Input:

int((2+3*x)^(1/2)/(1-2*x)^(3/2)/(3+5*x)^(5/2),x)
 

Output:

int((sqrt(3*x + 2)*sqrt(5*x + 3)*sqrt( - 2*x + 1))/(500*x**5 + 400*x**4 - 
235*x**3 - 207*x**2 + 27*x + 27),x)