\(\int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx\) [713]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 97 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {3 \sqrt {1-2 x}}{14 (2+3 x)^2}+\frac {219 \sqrt {1-2 x}}{98 (2+3 x)}+\frac {2523}{49} \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-50 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \] Output:

3/14*(1-2*x)^(1/2)/(2+3*x)^2+219*(1-2*x)^(1/2)/(196+294*x)+2523/343*21^(1/ 
2)*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))-50/11*55^(1/2)*arctanh(1/11*55^(1/2 
)*(1-2*x)^(1/2))
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {9 \sqrt {1-2 x} (51+73 x)}{98 (2+3 x)^2}+\frac {2523}{49} \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-50 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \] Input:

Integrate[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)),x]
 

Output:

(9*Sqrt[1 - 2*x]*(51 + 73*x))/(98*(2 + 3*x)^2) + (2523*Sqrt[3/7]*ArcTanh[S 
qrt[3/7]*Sqrt[1 - 2*x]])/49 - 50*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2* 
x]]
 

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {114, 168, 174, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {1-2 x} (3 x+2)^3 (5 x+3)} \, dx\)

\(\Big \downarrow \) 114

\(\displaystyle \frac {1}{14} \int \frac {43-45 x}{\sqrt {1-2 x} (3 x+2)^2 (5 x+3)}dx+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \int \frac {1793-1095 x}{\sqrt {1-2 x} (3 x+2) (5 x+3)}dx+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \left (12250 \int \frac {1}{\sqrt {1-2 x} (5 x+3)}dx-7569 \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx\right )+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \left (7569 \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}-12250 \int \frac {1}{\frac {11}{2}-\frac {5}{2} (1-2 x)}d\sqrt {1-2 x}\right )+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{14} \left (\frac {1}{7} \left (5046 \sqrt {\frac {3}{7}} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-4900 \sqrt {\frac {5}{11}} \text {arctanh}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\right )+\frac {219 \sqrt {1-2 x}}{7 (3 x+2)}\right )+\frac {3 \sqrt {1-2 x}}{14 (3 x+2)^2}\)

Input:

Int[1/(Sqrt[1 - 2*x]*(2 + 3*x)^3*(3 + 5*x)),x]
 

Output:

(3*Sqrt[1 - 2*x])/(14*(2 + 3*x)^2) + ((219*Sqrt[1 - 2*x])/(7*(2 + 3*x)) + 
(5046*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] - 4900*Sqrt[5/11]*ArcTanh 
[Sqrt[5/11]*Sqrt[1 - 2*x]])/7)/14
 

Defintions of rubi rules used

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.66

method result size
risch \(-\frac {9 \left (146 x^{2}+29 x -51\right )}{98 \left (2+3 x \right )^{2} \sqrt {1-2 x}}+\frac {2523 \sqrt {21}\, \operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right )}{343}-\frac {50 \sqrt {55}\, \operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right )}{11}\) \(64\)
derivativedivides \(-\frac {162 \left (\frac {73 \left (1-2 x \right )^{\frac {3}{2}}}{882}-\frac {25 \sqrt {1-2 x}}{126}\right )}{\left (-4-6 x \right )^{2}}+\frac {2523 \sqrt {21}\, \operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right )}{343}-\frac {50 \sqrt {55}\, \operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right )}{11}\) \(66\)
default \(-\frac {162 \left (\frac {73 \left (1-2 x \right )^{\frac {3}{2}}}{882}-\frac {25 \sqrt {1-2 x}}{126}\right )}{\left (-4-6 x \right )^{2}}+\frac {2523 \sqrt {21}\, \operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right )}{343}-\frac {50 \sqrt {55}\, \operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right )}{11}\) \(66\)
pseudoelliptic \(\frac {55506 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (2+3 x \right )^{2} \sqrt {21}-34300 \,\operatorname {arctanh}\left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \left (2+3 x \right )^{2} \sqrt {55}+693 \sqrt {1-2 x}\, \left (73 x +51\right )}{7546 \left (2+3 x \right )^{2}}\) \(75\)
trager \(\frac {9 \left (73 x +51\right ) \sqrt {1-2 x}}{98 \left (2+3 x \right )^{2}}+\frac {2523 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (-\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x -5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )-21 \sqrt {1-2 x}}{2+3 x}\right )}{686}+\frac {25 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) \ln \left (\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right ) x +55 \sqrt {1-2 x}-8 \operatorname {RootOf}\left (\textit {\_Z}^{2}-55\right )}{3+5 x}\right )}{11}\) \(112\)

Input:

int(1/(1-2*x)^(1/2)/(2+3*x)^3/(3+5*x),x,method=_RETURNVERBOSE)
 

Output:

-9/98*(146*x^2+29*x-51)/(2+3*x)^2/(1-2*x)^(1/2)+2523/343*21^(1/2)*arctanh( 
1/7*21^(1/2)*(1-2*x)^(1/2))-50/11*55^(1/2)*arctanh(1/11*55^(1/2)*(1-2*x)^( 
1/2))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {2450 \, \sqrt {\frac {5}{11}} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (\frac {5 \, x + 11 \, \sqrt {\frac {5}{11}} \sqrt {-2 \, x + 1} - 8}{5 \, x + 3}\right ) + 2523 \, \sqrt {\frac {3}{7}} {\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (\frac {3 \, x - 7 \, \sqrt {\frac {3}{7}} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 9 \, {\left (73 \, x + 51\right )} \sqrt {-2 \, x + 1}}{98 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} \] Input:

integrate(1/(1-2*x)^(1/2)/(2+3*x)^3/(3+5*x),x, algorithm="fricas")
 

Output:

1/98*(2450*sqrt(5/11)*(9*x^2 + 12*x + 4)*log((5*x + 11*sqrt(5/11)*sqrt(-2* 
x + 1) - 8)/(5*x + 3)) + 2523*sqrt(3/7)*(9*x^2 + 12*x + 4)*log((3*x - 7*sq 
rt(3/7)*sqrt(-2*x + 1) - 5)/(3*x + 2)) + 9*(73*x + 51)*sqrt(-2*x + 1))/(9* 
x^2 + 12*x + 4)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 8.46 (sec) , antiderivative size = 1953, normalized size of antiderivative = 20.13 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\text {Too large to display} \] Input:

integrate(1/(1-2*x)**(1/2)/(2+3*x)**3/(3+5*x),x)
 

Output:

3642408*sqrt(2)*I*(x - 1/2)**(11/2)/(4889808*(x - 1/2)**6 + 22819104*(x - 
1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2 
)**2) + 12864852*sqrt(2)*I*(x - 1/2)**(9/2)/(4889808*(x - 1/2)**6 + 228191 
04*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973* 
(x - 1/2)**2) + 15144822*sqrt(2)*I*(x - 1/2)**(7/2)/(4889808*(x - 1/2)**6 
+ 22819104*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 
9058973*(x - 1/2)**2) + 5942475*sqrt(2)*I*(x - 1/2)**(5/2)/(4889808*(x - 1 
/2)**6 + 22819104*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2 
)**3 + 9058973*(x - 1/2)**2) - 22226400*sqrt(55)*I*(x - 1/2)**6*atan(sqrt( 
110)*sqrt(x - 1/2)/11)/(4889808*(x - 1/2)**6 + 22819104*(x - 1/2)**5 + 399 
33432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2)**2) + 10692 
00*sqrt(21)*I*(x - 1/2)**6*atan(sqrt(42)/(6*sqrt(x - 1/2)))/(4889808*(x - 
1/2)**6 + 22819104*(x - 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/ 
2)**3 + 9058973*(x - 1/2)**2) + 37037088*sqrt(21)*I*(x - 1/2)**6*atan(sqrt 
(42)*sqrt(x - 1/2)/7)/(4889808*(x - 1/2)**6 + 22819104*(x - 1/2)**5 + 3993 
3432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2)**2) - 185185 
44*sqrt(21)*I*pi*(x - 1/2)**6/(4889808*(x - 1/2)**6 + 22819104*(x - 1/2)** 
5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x - 1/2)**2) 
+ 11113200*sqrt(55)*I*pi*(x - 1/2)**6/(4889808*(x - 1/2)**6 + 22819104*(x 
- 1/2)**5 + 39933432*(x - 1/2)**4 + 31059336*(x - 1/2)**3 + 9058973*(x ...
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.13 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {25}{11} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) - \frac {2523}{686} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) - \frac {9 \, {\left (73 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 175 \, \sqrt {-2 \, x + 1}\right )}}{49 \, {\left (9 \, {\left (2 \, x - 1\right )}^{2} + 84 \, x + 7\right )}} \] Input:

integrate(1/(1-2*x)^(1/2)/(2+3*x)^3/(3+5*x),x, algorithm="maxima")
 

Output:

25/11*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x 
+ 1))) - 2523/686*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 
3*sqrt(-2*x + 1))) - 9/49*(73*(-2*x + 1)^(3/2) - 175*sqrt(-2*x + 1))/(9*(2 
*x - 1)^2 + 84*x + 7)
                                                                                    
                                                                                    
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.10 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {25}{11} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {2523}{686} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {9 \, {\left (73 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 175 \, \sqrt {-2 \, x + 1}\right )}}{196 \, {\left (3 \, x + 2\right )}^{2}} \] Input:

integrate(1/(1-2*x)^(1/2)/(2+3*x)^3/(3+5*x),x, algorithm="giac")
 

Output:

25/11*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5* 
sqrt(-2*x + 1))) - 2523/686*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x 
 + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 9/196*(73*(-2*x + 1)^(3/2) - 175*s 
qrt(-2*x + 1))/(3*x + 2)^2
 

Mupad [B] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.73 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {2523\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{343}-\frac {50\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{11}+\frac {\frac {25\,\sqrt {1-2\,x}}{7}-\frac {73\,{\left (1-2\,x\right )}^{3/2}}{49}}{\frac {28\,x}{3}+{\left (2\,x-1\right )}^2+\frac {7}{9}} \] Input:

int(1/((1 - 2*x)^(1/2)*(3*x + 2)^3*(5*x + 3)),x)
 

Output:

(2523*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/343 - (50*55^(1/2)*ata 
nh((55^(1/2)*(1 - 2*x)^(1/2))/11))/11 + ((25*(1 - 2*x)^(1/2))/7 - (73*(1 - 
 2*x)^(3/2))/49)/((28*x)/3 + (2*x - 1)^2 + 7/9)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 251, normalized size of antiderivative = 2.59 \[ \int \frac {1}{\sqrt {1-2 x} (2+3 x)^3 (3+5 x)} \, dx=\frac {50589 \sqrt {-2 x +1}\, x +35343 \sqrt {-2 x +1}+154350 \sqrt {55}\, \mathrm {log}\left (5 \sqrt {-2 x +1}-\sqrt {55}\right ) x^{2}+205800 \sqrt {55}\, \mathrm {log}\left (5 \sqrt {-2 x +1}-\sqrt {55}\right ) x +68600 \sqrt {55}\, \mathrm {log}\left (5 \sqrt {-2 x +1}-\sqrt {55}\right )-154350 \sqrt {55}\, \mathrm {log}\left (5 \sqrt {-2 x +1}+\sqrt {55}\right ) x^{2}-205800 \sqrt {55}\, \mathrm {log}\left (5 \sqrt {-2 x +1}+\sqrt {55}\right ) x -68600 \sqrt {55}\, \mathrm {log}\left (5 \sqrt {-2 x +1}+\sqrt {55}\right )-249777 \sqrt {21}\, \mathrm {log}\left (3 \sqrt {-2 x +1}-\sqrt {21}\right ) x^{2}-333036 \sqrt {21}\, \mathrm {log}\left (3 \sqrt {-2 x +1}-\sqrt {21}\right ) x -111012 \sqrt {21}\, \mathrm {log}\left (3 \sqrt {-2 x +1}-\sqrt {21}\right )+249777 \sqrt {21}\, \mathrm {log}\left (3 \sqrt {-2 x +1}+\sqrt {21}\right ) x^{2}+333036 \sqrt {21}\, \mathrm {log}\left (3 \sqrt {-2 x +1}+\sqrt {21}\right ) x +111012 \sqrt {21}\, \mathrm {log}\left (3 \sqrt {-2 x +1}+\sqrt {21}\right )}{67914 x^{2}+90552 x +30184} \] Input:

int(1/(1-2*x)^(1/2)/(2+3*x)^3/(3+5*x),x)
 

Output:

(50589*sqrt( - 2*x + 1)*x + 35343*sqrt( - 2*x + 1) + 154350*sqrt(55)*log(5 
*sqrt( - 2*x + 1) - sqrt(55))*x**2 + 205800*sqrt(55)*log(5*sqrt( - 2*x + 1 
) - sqrt(55))*x + 68600*sqrt(55)*log(5*sqrt( - 2*x + 1) - sqrt(55)) - 1543 
50*sqrt(55)*log(5*sqrt( - 2*x + 1) + sqrt(55))*x**2 - 205800*sqrt(55)*log( 
5*sqrt( - 2*x + 1) + sqrt(55))*x - 68600*sqrt(55)*log(5*sqrt( - 2*x + 1) + 
 sqrt(55)) - 249777*sqrt(21)*log(3*sqrt( - 2*x + 1) - sqrt(21))*x**2 - 333 
036*sqrt(21)*log(3*sqrt( - 2*x + 1) - sqrt(21))*x - 111012*sqrt(21)*log(3* 
sqrt( - 2*x + 1) - sqrt(21)) + 249777*sqrt(21)*log(3*sqrt( - 2*x + 1) + sq 
rt(21))*x**2 + 333036*sqrt(21)*log(3*sqrt( - 2*x + 1) + sqrt(21))*x + 1110 
12*sqrt(21)*log(3*sqrt( - 2*x + 1) + sqrt(21)))/(7546*(9*x**2 + 12*x + 4))