\(\int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx\) [12]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 32, antiderivative size = 55 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=\frac {c \sqrt {-1+d x} \sqrt {1+d x}}{d^2}+\frac {b \text {arccosh}(d x)}{d}+a \arctan \left (\sqrt {-1+d x} \sqrt {1+d x}\right ) \] Output:

c*(d*x-1)^(1/2)*(d*x+1)^(1/2)/d^2+b*arccosh(d*x)/d+a*arctan((d*x-1)^(1/2)* 
(d*x+1)^(1/2))
 

Mathematica [A] (warning: unable to verify)

Time = 0.14 (sec) , antiderivative size = 69, normalized size of antiderivative = 1.25 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=\frac {c \sqrt {-1+d x} \sqrt {1+d x}}{d^2}+2 a \arctan \left (\sqrt {\frac {-1+d x}{1+d x}}\right )+\frac {2 b \text {arctanh}\left (\sqrt {\frac {-1+d x}{1+d x}}\right )}{d} \] Input:

Integrate[(a + b*x + c*x^2)/(x*Sqrt[-1 + d*x]*Sqrt[1 + d*x]),x]
 

Output:

(c*Sqrt[-1 + d*x]*Sqrt[1 + d*x])/d^2 + 2*a*ArcTan[Sqrt[(-1 + d*x)/(1 + d*x 
)]] + (2*b*ArcTanh[Sqrt[(-1 + d*x)/(1 + d*x)]])/d
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.62, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.281, Rules used = {2113, 2340, 27, 538, 224, 219, 243, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b x+c x^2}{x \sqrt {d x-1} \sqrt {d x+1}} \, dx\)

\(\Big \downarrow \) 2113

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \int \frac {c x^2+b x+a}{x \sqrt {d^2 x^2-1}}dx}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 2340

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (\frac {\int \frac {d^2 (a+b x)}{x \sqrt {d^2 x^2-1}}dx}{d^2}+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (\int \frac {a+b x}{x \sqrt {d^2 x^2-1}}dx+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 538

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (a \int \frac {1}{x \sqrt {d^2 x^2-1}}dx+b \int \frac {1}{\sqrt {d^2 x^2-1}}dx+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (a \int \frac {1}{x \sqrt {d^2 x^2-1}}dx+b \int \frac {1}{1-\frac {d^2 x^2}{d^2 x^2-1}}d\frac {x}{\sqrt {d^2 x^2-1}}+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (a \int \frac {1}{x \sqrt {d^2 x^2-1}}dx+\frac {b \text {arctanh}\left (\frac {d x}{\sqrt {d^2 x^2-1}}\right )}{d}+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (\frac {1}{2} a \int \frac {1}{x^2 \sqrt {d^2 x^2-1}}dx^2+\frac {b \text {arctanh}\left (\frac {d x}{\sqrt {d^2 x^2-1}}\right )}{d}+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (\frac {a \int \frac {1}{\frac {x^4}{d^2}+\frac {1}{d^2}}d\sqrt {d^2 x^2-1}}{d^2}+\frac {b \text {arctanh}\left (\frac {d x}{\sqrt {d^2 x^2-1}}\right )}{d}+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\sqrt {d^2 x^2-1} \left (a \arctan \left (\sqrt {d^2 x^2-1}\right )+\frac {b \text {arctanh}\left (\frac {d x}{\sqrt {d^2 x^2-1}}\right )}{d}+\frac {c \sqrt {d^2 x^2-1}}{d^2}\right )}{\sqrt {d x-1} \sqrt {d x+1}}\)

Input:

Int[(a + b*x + c*x^2)/(x*Sqrt[-1 + d*x]*Sqrt[1 + d*x]),x]
 

Output:

(Sqrt[-1 + d^2*x^2]*((c*Sqrt[-1 + d^2*x^2])/d^2 + a*ArcTan[Sqrt[-1 + d^2*x 
^2]] + (b*ArcTanh[(d*x)/Sqrt[-1 + d^2*x^2]])/d))/(Sqrt[-1 + d*x]*Sqrt[1 + 
d*x])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 538
Int[((c_) + (d_.)*(x_))/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp 
[c   Int[1/(x*Sqrt[a + b*x^2]), x], x] + Simp[d   Int[1/Sqrt[a + b*x^2], x] 
, x] /; FreeQ[{a, b, c, d}, x]
 

rule 2113
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_. 
)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*x)^FracPart[m]*((c + d*x)^FracPart[ 
m]/(a*c + b*d*x^2)^FracPart[m])   Int[Px*(a*c + b*d*x^2)^m*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x] && EqQ[b*c + a 
*d, 0] && EqQ[m, n] &&  !IntegerQ[m]
 

rule 2340
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[ 
{q = Expon[Pq, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1 
)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Simp[1/(b*(m 
+ q + 2*p + 1))   Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1) 
*Pq - b*f*(m + q + 2*p + 1)*x^q - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; 
GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ 
[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.70 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.73

method result size
default \(\frac {\left (-\arctan \left (\frac {1}{\sqrt {d^{2} x^{2}-1}}\right ) \operatorname {csgn}\left (d \right ) a \,d^{2}+\operatorname {csgn}\left (d \right ) \sqrt {d^{2} x^{2}-1}\, c +\ln \left (\left (\sqrt {\left (x d +1\right ) \left (x d -1\right )}\, \operatorname {csgn}\left (d \right )+x d \right ) \operatorname {csgn}\left (d \right )\right ) b d \right ) \sqrt {x d -1}\, \sqrt {x d +1}\, \operatorname {csgn}\left (d \right )}{d^{2} \sqrt {d^{2} x^{2}-1}}\) \(95\)

Input:

int((c*x^2+b*x+a)/x/(d*x-1)^(1/2)/(d*x+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(-arctan(1/(d^2*x^2-1)^(1/2))*csgn(d)*a*d^2+csgn(d)*(d^2*x^2-1)^(1/2)*c+ln 
((((d*x+1)*(d*x-1))^(1/2)*csgn(d)+x*d)*csgn(d))*b*d)*(d*x-1)^(1/2)*(d*x+1) 
^(1/2)/d^2*csgn(d)/(d^2*x^2-1)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.33 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=\frac {2 \, a d^{2} \arctan \left (-d x + \sqrt {d x + 1} \sqrt {d x - 1}\right ) - b d \log \left (-d x + \sqrt {d x + 1} \sqrt {d x - 1}\right ) + \sqrt {d x + 1} \sqrt {d x - 1} c}{d^{2}} \] Input:

integrate((c*x^2+b*x+a)/x/(d*x-1)^(1/2)/(d*x+1)^(1/2),x, algorithm="fricas 
")
 

Output:

(2*a*d^2*arctan(-d*x + sqrt(d*x + 1)*sqrt(d*x - 1)) - b*d*log(-d*x + sqrt( 
d*x + 1)*sqrt(d*x - 1)) + sqrt(d*x + 1)*sqrt(d*x - 1)*c)/d^2
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 30.25 (sec) , antiderivative size = 240, normalized size of antiderivative = 4.36 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=- \frac {a {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {3}{4}, \frac {5}{4}, 1 & 1, 1, \frac {3}{2} \\\frac {1}{2}, \frac {3}{4}, 1, \frac {5}{4}, \frac {3}{2} & 0 \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} + \frac {i a {G_{6, 6}^{2, 6}\left (\begin {matrix} 0, \frac {1}{4}, \frac {1}{2}, \frac {3}{4}, 1, 1 & \\\frac {1}{4}, \frac {3}{4} & 0, \frac {1}{2}, \frac {1}{2}, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} + \frac {b {G_{6, 6}^{6, 2}\left (\begin {matrix} \frac {1}{4}, \frac {3}{4} & \frac {1}{2}, \frac {1}{2}, 1, 1 \\0, \frac {1}{4}, \frac {1}{2}, \frac {3}{4}, 1, 0 & \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d} - \frac {i b {G_{6, 6}^{2, 6}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4}, 0, \frac {1}{4}, \frac {1}{2}, 1 & \\- \frac {1}{4}, \frac {1}{4} & - \frac {1}{2}, 0, 0, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d} + \frac {c {G_{6, 6}^{6, 2}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{4} & 0, 0, \frac {1}{2}, 1 \\- \frac {1}{2}, - \frac {1}{4}, 0, \frac {1}{4}, \frac {1}{2}, 0 & \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d^{2}} + \frac {i c {G_{6, 6}^{2, 6}\left (\begin {matrix} -1, - \frac {3}{4}, - \frac {1}{2}, - \frac {1}{4}, 0, 1 & \\- \frac {3}{4}, - \frac {1}{4} & -1, - \frac {1}{2}, - \frac {1}{2}, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d^{2}} \] Input:

integrate((c*x**2+b*x+a)/x/(d*x-1)**(1/2)/(d*x+1)**(1/2),x)
 

Output:

-a*meijerg(((3/4, 5/4, 1), (1, 1, 3/2)), ((1/2, 3/4, 1, 5/4, 3/2), (0,)), 
1/(d**2*x**2))/(4*pi**(3/2)) + I*a*meijerg(((0, 1/4, 1/2, 3/4, 1, 1), ()), 
 ((1/4, 3/4), (0, 1/2, 1/2, 0)), exp_polar(2*I*pi)/(d**2*x**2))/(4*pi**(3/ 
2)) + b*meijerg(((1/4, 3/4), (1/2, 1/2, 1, 1)), ((0, 1/4, 1/2, 3/4, 1, 0), 
 ()), 1/(d**2*x**2))/(4*pi**(3/2)*d) - I*b*meijerg(((-1/2, -1/4, 0, 1/4, 1 
/2, 1), ()), ((-1/4, 1/4), (-1/2, 0, 0, 0)), exp_polar(2*I*pi)/(d**2*x**2) 
)/(4*pi**(3/2)*d) + c*meijerg(((-1/4, 1/4), (0, 0, 1/2, 1)), ((-1/2, -1/4, 
 0, 1/4, 1/2, 0), ()), 1/(d**2*x**2))/(4*pi**(3/2)*d**2) + I*c*meijerg(((- 
1, -3/4, -1/2, -1/4, 0, 1), ()), ((-3/4, -1/4), (-1, -1/2, -1/2, 0)), exp_ 
polar(2*I*pi)/(d**2*x**2))/(4*pi**(3/2)*d**2)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.02 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=-a \arcsin \left (\frac {1}{d {\left | x \right |}}\right ) + \frac {b \log \left (2 \, d^{2} x + 2 \, \sqrt {d^{2} x^{2} - 1} d\right )}{d} + \frac {\sqrt {d^{2} x^{2} - 1} c}{d^{2}} \] Input:

integrate((c*x^2+b*x+a)/x/(d*x-1)^(1/2)/(d*x+1)^(1/2),x, algorithm="maxima 
")
 

Output:

-a*arcsin(1/(d*abs(x))) + b*log(2*d^2*x + 2*sqrt(d^2*x^2 - 1)*d)/d + sqrt( 
d^2*x^2 - 1)*c/d^2
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.29 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=-2 \, a \arctan \left (\frac {1}{2} \, {\left (\sqrt {d x + 1} - \sqrt {d x - 1}\right )}^{2}\right ) - \frac {b \log \left ({\left (\sqrt {d x + 1} - \sqrt {d x - 1}\right )}^{2}\right )}{d} + \frac {\sqrt {d x + 1} \sqrt {d x - 1} c}{d^{2}} \] Input:

integrate((c*x^2+b*x+a)/x/(d*x-1)^(1/2)/(d*x+1)^(1/2),x, algorithm="giac")
 

Output:

-2*a*arctan(1/2*(sqrt(d*x + 1) - sqrt(d*x - 1))^2) - b*log((sqrt(d*x + 1) 
- sqrt(d*x - 1))^2)/d + sqrt(d*x + 1)*sqrt(d*x - 1)*c/d^2
 

Mupad [B] (verification not implemented)

Time = 4.34 (sec) , antiderivative size = 118, normalized size of antiderivative = 2.15 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=\frac {c\,\sqrt {d\,x-1}\,\sqrt {d\,x+1}}{d^2}-\frac {4\,b\,\mathrm {atan}\left (\frac {d\,\left (\sqrt {d\,x-1}-\mathrm {i}\right )}{\left (\sqrt {d\,x+1}-1\right )\,\sqrt {-d^2}}\right )}{\sqrt {-d^2}}-a\,\left (\ln \left (\frac {{\left (\sqrt {d\,x-1}-\mathrm {i}\right )}^2}{{\left (\sqrt {d\,x+1}-1\right )}^2}+1\right )-\ln \left (\frac {\sqrt {d\,x-1}-\mathrm {i}}{\sqrt {d\,x+1}-1}\right )\right )\,1{}\mathrm {i} \] Input:

int((a + b*x + c*x^2)/(x*(d*x - 1)^(1/2)*(d*x + 1)^(1/2)),x)
 

Output:

(c*(d*x - 1)^(1/2)*(d*x + 1)^(1/2))/d^2 - (4*b*atan((d*((d*x - 1)^(1/2) - 
1i))/(((d*x + 1)^(1/2) - 1)*(-d^2)^(1/2))))/(-d^2)^(1/2) - a*(log(((d*x - 
1)^(1/2) - 1i)^2/((d*x + 1)^(1/2) - 1)^2 + 1) - log(((d*x - 1)^(1/2) - 1i) 
/((d*x + 1)^(1/2) - 1)))*1i
 

Reduce [B] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.53 \[ \int \frac {a+b x+c x^2}{x \sqrt {-1+d x} \sqrt {1+d x}} \, dx=\frac {2 \mathit {atan} \left (\sqrt {d x -1}+\sqrt {d x +1}-1\right ) a \,d^{2}-2 \mathit {atan} \left (\sqrt {d x -1}+\sqrt {d x +1}+1\right ) a \,d^{2}+\sqrt {d x +1}\, \sqrt {d x -1}\, c +2 \,\mathrm {log}\left (\frac {\sqrt {d x -1}+\sqrt {d x +1}}{\sqrt {2}}\right ) b d}{d^{2}} \] Input:

int((c*x^2+b*x+a)/x/(d*x-1)^(1/2)/(d*x+1)^(1/2),x)
 

Output:

(2*atan(sqrt(d*x - 1) + sqrt(d*x + 1) - 1)*a*d**2 - 2*atan(sqrt(d*x - 1) + 
 sqrt(d*x + 1) + 1)*a*d**2 + sqrt(d*x + 1)*sqrt(d*x - 1)*c + 2*log((sqrt(d 
*x - 1) + sqrt(d*x + 1))/sqrt(2))*b*d)/d**2