\(\int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx\) [20]

Optimal result
Mathematica [A] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [C] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 100 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=-\frac {\left (2 c d^2+3 b e^2\right ) \sqrt {d-e x} \sqrt {d+e x}}{3 e^4}-\frac {c x^2 \sqrt {d-e x} \sqrt {d+e x}}{3 e^2}-\frac {a \text {arctanh}\left (\frac {\sqrt {d-e x} \sqrt {d+e x}}{d}\right )}{d} \] Output:

-1/3*(3*b*e^2+2*c*d^2)*(-e*x+d)^(1/2)*(e*x+d)^(1/2)/e^4-1/3*c*x^2*(-e*x+d) 
^(1/2)*(e*x+d)^(1/2)/e^2-a*arctanh((-e*x+d)^(1/2)*(e*x+d)^(1/2)/d)/d
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.06 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=-\frac {\sqrt {d-e x} \sqrt {d+e x} \left (2 c d^2+3 b e^2+c e^2 x^2\right )}{3 e^4}+\frac {a \log \left (-1+\frac {\sqrt {d+e x}}{\sqrt {d-e x}}\right )}{d}-\frac {a \log \left (d+\frac {d \sqrt {d+e x}}{\sqrt {d-e x}}\right )}{d} \] Input:

Integrate[(a + b*x^2 + c*x^4)/(x*Sqrt[d - e*x]*Sqrt[d + e*x]),x]
 

Output:

-1/3*(Sqrt[d - e*x]*Sqrt[d + e*x]*(2*c*d^2 + 3*b*e^2 + c*e^2*x^2))/e^4 + ( 
a*Log[-1 + Sqrt[d + e*x]/Sqrt[d - e*x]])/d - (a*Log[d + (d*Sqrt[d + e*x])/ 
Sqrt[d - e*x]])/d
 

Rubi [A] (warning: unable to verify)

Time = 0.35 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {1905, 1578, 1192, 25, 1467, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx\)

\(\Big \downarrow \) 1905

\(\displaystyle \frac {\sqrt {d^2-e^2 x^2} \int \frac {c x^4+b x^2+a}{x \sqrt {d^2-e^2 x^2}}dx}{\sqrt {d-e x} \sqrt {d+e x}}\)

\(\Big \downarrow \) 1578

\(\displaystyle \frac {\sqrt {d^2-e^2 x^2} \int \frac {c x^4+b x^2+a}{x^2 \sqrt {d^2-e^2 x^2}}dx^2}{2 \sqrt {d-e x} \sqrt {d+e x}}\)

\(\Big \downarrow \) 1192

\(\displaystyle \frac {\sqrt {d^2-e^2 x^2} \int -\frac {c x^8-\left (2 c d^2+b e^2\right ) x^4+c d^4+a e^4+b d^2 e^2}{d^2-x^4}d\sqrt {d^2-e^2 x^2}}{e^4 \sqrt {d-e x} \sqrt {d+e x}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {d^2-e^2 x^2} \int \frac {c x^8-\left (2 c d^2+b e^2\right ) x^4+c d^4+a e^4+b d^2 e^2}{d^2-x^4}d\sqrt {d^2-e^2 x^2}}{e^4 \sqrt {d-e x} \sqrt {d+e x}}\)

\(\Big \downarrow \) 1467

\(\displaystyle -\frac {\sqrt {d^2-e^2 x^2} \int \left (\frac {a e^4}{d^2-x^4}+b e^2-c x^4+c d^2\right )d\sqrt {d^2-e^2 x^2}}{e^4 \sqrt {d-e x} \sqrt {d+e x}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {d^2-e^2 x^2} \left (-\frac {a e^4 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )}{d}-\sqrt {d^2-e^2 x^2} \left (b e^2+c d^2\right )+\frac {c x^6}{3}\right )}{e^4 \sqrt {d-e x} \sqrt {d+e x}}\)

Input:

Int[(a + b*x^2 + c*x^4)/(x*Sqrt[d - e*x]*Sqrt[d + e*x]),x]
 

Output:

(Sqrt[d^2 - e^2*x^2]*((c*x^6)/3 - (c*d^2 + b*e^2)*Sqrt[d^2 - e^2*x^2] - (a 
*e^4*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/d))/(e^4*Sqrt[d - e*x]*Sqrt[d + e*x])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1192
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
 + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2/e^(n + 2*p + 1)   Subst[Int[x^( 
2*m + 1)*(e*f - d*g + g*x^2)^n*(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + 
 c*x^4)^p, x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && 
IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m + 1/2]
 

rule 1467
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), 
 x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], 
x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e 
 + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]
 

rule 1578
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_ 
)^4)^(p_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a 
+ b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && Int 
egerQ[(m - 1)/2]
 

rule 1905
Int[((f_.)*(x_))^(m_.)*((d1_) + (e1_.)*(x_)^(non2_.))^(q_.)*((d2_) + (e2_.) 
*(x_)^(non2_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x 
_Symbol] :> Simp[(d1 + e1*x^(n/2))^FracPart[q]*((d2 + e2*x^(n/2))^FracPart[ 
q]/(d1*d2 + e1*e2*x^n)^FracPart[q])   Int[(f*x)^m*(d1*d2 + e1*e2*x^n)^q*(a 
+ b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, n, p, 
q}, x] && EqQ[n2, 2*n] && EqQ[non2, n/2] && EqQ[d2*e1 + d1*e2, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.84 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.43

method result size
default \(-\frac {\sqrt {-e x +d}\, \sqrt {e x +d}\, \left (\operatorname {csgn}\left (d \right ) c d \,e^{2} x^{2} \sqrt {-e^{2} x^{2}+d^{2}}+3 \sqrt {-e^{2} x^{2}+d^{2}}\, \operatorname {csgn}\left (d \right ) b d \,e^{2}+2 \sqrt {-e^{2} x^{2}+d^{2}}\, \operatorname {csgn}\left (d \right ) c \,d^{3}+3 \ln \left (\frac {2 d \left (\sqrt {-e^{2} x^{2}+d^{2}}\, \operatorname {csgn}\left (d \right )+d \right )}{x}\right ) a \,e^{4}\right ) \operatorname {csgn}\left (d \right )}{3 d \sqrt {-e^{2} x^{2}+d^{2}}\, e^{4}}\) \(143\)

Input:

int((c*x^4+b*x^2+a)/x/(-e*x+d)^(1/2)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE 
)
 

Output:

-1/3*(-e*x+d)^(1/2)*(e*x+d)^(1/2)/d*(csgn(d)*c*d*e^2*x^2*(-e^2*x^2+d^2)^(1 
/2)+3*(-e^2*x^2+d^2)^(1/2)*csgn(d)*b*d*e^2+2*(-e^2*x^2+d^2)^(1/2)*csgn(d)* 
c*d^3+3*ln(2*d*((-e^2*x^2+d^2)^(1/2)*csgn(d)+d)/x)*a*e^4)*csgn(d)/(-e^2*x^ 
2+d^2)^(1/2)/e^4
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.80 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=\frac {3 \, a e^{4} \log \left (\frac {\sqrt {e x + d} \sqrt {-e x + d} - d}{x}\right ) - {\left (c d e^{2} x^{2} + 2 \, c d^{3} + 3 \, b d e^{2}\right )} \sqrt {e x + d} \sqrt {-e x + d}}{3 \, d e^{4}} \] Input:

integrate((c*x^4+b*x^2+a)/x/(-e*x+d)^(1/2)/(e*x+d)^(1/2),x, algorithm="fri 
cas")
 

Output:

1/3*(3*a*e^4*log((sqrt(e*x + d)*sqrt(-e*x + d) - d)/x) - (c*d*e^2*x^2 + 2* 
c*d^3 + 3*b*d*e^2)*sqrt(e*x + d)*sqrt(-e*x + d))/(d*e^4)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 20.09 (sec) , antiderivative size = 304, normalized size of antiderivative = 3.04 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=\frac {i a {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {3}{4}, \frac {5}{4}, 1 & 1, 1, \frac {3}{2} \\\frac {1}{2}, \frac {3}{4}, 1, \frac {5}{4}, \frac {3}{2} & 0 \end {matrix} \middle | {\frac {d^{2}}{e^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d} - \frac {a {G_{6, 6}^{2, 6}\left (\begin {matrix} 0, \frac {1}{4}, \frac {1}{2}, \frac {3}{4}, 1, 1 & \\\frac {1}{4}, \frac {3}{4} & 0, \frac {1}{2}, \frac {1}{2}, 0 \end {matrix} \middle | {\frac {d^{2} e^{- 2 i \pi }}{e^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d} - \frac {i b d {G_{6, 6}^{6, 2}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{4} & 0, 0, \frac {1}{2}, 1 \\- \frac {1}{2}, - \frac {1}{4}, 0, \frac {1}{4}, \frac {1}{2}, 0 & \end {matrix} \middle | {\frac {d^{2}}{e^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} e^{2}} - \frac {b d {G_{6, 6}^{2, 6}\left (\begin {matrix} -1, - \frac {3}{4}, - \frac {1}{2}, - \frac {1}{4}, 0, 1 & \\- \frac {3}{4}, - \frac {1}{4} & -1, - \frac {1}{2}, - \frac {1}{2}, 0 \end {matrix} \middle | {\frac {d^{2} e^{- 2 i \pi }}{e^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} e^{2}} - \frac {i c d^{3} {G_{6, 6}^{6, 2}\left (\begin {matrix} - \frac {5}{4}, - \frac {3}{4} & -1, -1, - \frac {1}{2}, 1 \\- \frac {3}{2}, - \frac {5}{4}, -1, - \frac {3}{4}, - \frac {1}{2}, 0 & \end {matrix} \middle | {\frac {d^{2}}{e^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} e^{4}} - \frac {c d^{3} {G_{6, 6}^{2, 6}\left (\begin {matrix} -2, - \frac {7}{4}, - \frac {3}{2}, - \frac {5}{4}, -1, 1 & \\- \frac {7}{4}, - \frac {5}{4} & -2, - \frac {3}{2}, - \frac {3}{2}, 0 \end {matrix} \middle | {\frac {d^{2} e^{- 2 i \pi }}{e^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} e^{4}} \] Input:

integrate((c*x**4+b*x**2+a)/x/(-e*x+d)**(1/2)/(e*x+d)**(1/2),x)
 

Output:

I*a*meijerg(((3/4, 5/4, 1), (1, 1, 3/2)), ((1/2, 3/4, 1, 5/4, 3/2), (0,)), 
 d**2/(e**2*x**2))/(4*pi**(3/2)*d) - a*meijerg(((0, 1/4, 1/2, 3/4, 1, 1), 
()), ((1/4, 3/4), (0, 1/2, 1/2, 0)), d**2*exp_polar(-2*I*pi)/(e**2*x**2))/ 
(4*pi**(3/2)*d) - I*b*d*meijerg(((-1/4, 1/4), (0, 0, 1/2, 1)), ((-1/2, -1/ 
4, 0, 1/4, 1/2, 0), ()), d**2/(e**2*x**2))/(4*pi**(3/2)*e**2) - b*d*meijer 
g(((-1, -3/4, -1/2, -1/4, 0, 1), ()), ((-3/4, -1/4), (-1, -1/2, -1/2, 0)), 
 d**2*exp_polar(-2*I*pi)/(e**2*x**2))/(4*pi**(3/2)*e**2) - I*c*d**3*meijer 
g(((-5/4, -3/4), (-1, -1, -1/2, 1)), ((-3/2, -5/4, -1, -3/4, -1/2, 0), ()) 
, d**2/(e**2*x**2))/(4*pi**(3/2)*e**4) - c*d**3*meijerg(((-2, -7/4, -3/2, 
-5/4, -1, 1), ()), ((-7/4, -5/4), (-2, -3/2, -3/2, 0)), d**2*exp_polar(-2* 
I*pi)/(e**2*x**2))/(4*pi**(3/2)*e**4)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.05 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=-\frac {\sqrt {-e^{2} x^{2} + d^{2}} c x^{2}}{3 \, e^{2}} - \frac {a \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{{\left | x \right |}}\right )}{d} - \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} c d^{2}}{3 \, e^{4}} - \frac {\sqrt {-e^{2} x^{2} + d^{2}} b}{e^{2}} \] Input:

integrate((c*x^4+b*x^2+a)/x/(-e*x+d)^(1/2)/(e*x+d)^(1/2),x, algorithm="max 
ima")
 

Output:

-1/3*sqrt(-e^2*x^2 + d^2)*c*x^2/e^2 - a*log(2*d^2/abs(x) + 2*sqrt(-e^2*x^2 
 + d^2)*d/abs(x))/d - 2/3*sqrt(-e^2*x^2 + d^2)*c*d^2/e^4 - sqrt(-e^2*x^2 + 
 d^2)*b/e^2
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 189 vs. \(2 (84) = 168\).

Time = 0.28 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.89 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=-\frac {\frac {3 \, a e^{4} \log \left ({\left | -\frac {\sqrt {2} \sqrt {d} - \sqrt {-e x + d}}{\sqrt {e x + d}} + \frac {\sqrt {e x + d}}{\sqrt {2} \sqrt {d} - \sqrt {-e x + d}} + 2 \right |}\right )}{d} - \frac {3 \, a e^{4} \log \left ({\left | -\frac {\sqrt {2} \sqrt {d} - \sqrt {-e x + d}}{\sqrt {e x + d}} + \frac {\sqrt {e x + d}}{\sqrt {2} \sqrt {d} - \sqrt {-e x + d}} - 2 \right |}\right )}{d} + {\left (3 \, c d^{2} + 3 \, b e^{2} + {\left ({\left (e x + d\right )} c - 2 \, c d\right )} {\left (e x + d\right )}\right )} \sqrt {e x + d} \sqrt {-e x + d}}{3 \, e^{4}} \] Input:

integrate((c*x^4+b*x^2+a)/x/(-e*x+d)^(1/2)/(e*x+d)^(1/2),x, algorithm="gia 
c")
 

Output:

-1/3*(3*a*e^4*log(abs(-(sqrt(2)*sqrt(d) - sqrt(-e*x + d))/sqrt(e*x + d) + 
sqrt(e*x + d)/(sqrt(2)*sqrt(d) - sqrt(-e*x + d)) + 2))/d - 3*a*e^4*log(abs 
(-(sqrt(2)*sqrt(d) - sqrt(-e*x + d))/sqrt(e*x + d) + sqrt(e*x + d)/(sqrt(2 
)*sqrt(d) - sqrt(-e*x + d)) - 2))/d + (3*c*d^2 + 3*b*e^2 + ((e*x + d)*c - 
2*c*d)*(e*x + d))*sqrt(e*x + d)*sqrt(-e*x + d))/e^4
 

Mupad [B] (verification not implemented)

Time = 4.83 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.61 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=\frac {a\,\left (\ln \left (\frac {{\left (\sqrt {d+e\,x}-\sqrt {d}\right )}^2}{{\left (\sqrt {d-e\,x}-\sqrt {d}\right )}^2}-1\right )-\ln \left (\frac {\sqrt {d+e\,x}-\sqrt {d}}{\sqrt {d-e\,x}-\sqrt {d}}\right )\right )}{d}-\frac {\sqrt {d-e\,x}\,\left (\frac {2\,c\,d^3}{3\,e^4}+\frac {c\,x^3}{3\,e}+\frac {c\,d\,x^2}{3\,e^2}+\frac {2\,c\,d^2\,x}{3\,e^3}\right )}{\sqrt {d+e\,x}}-\frac {\left (\frac {b\,d}{e^2}+\frac {b\,x}{e}\right )\,\sqrt {d-e\,x}}{\sqrt {d+e\,x}} \] Input:

int((a + b*x^2 + c*x^4)/(x*(d + e*x)^(1/2)*(d - e*x)^(1/2)),x)
                                                                                    
                                                                                    
 

Output:

(a*(log(((d + e*x)^(1/2) - d^(1/2))^2/((d - e*x)^(1/2) - d^(1/2))^2 - 1) - 
 log(((d + e*x)^(1/2) - d^(1/2))/((d - e*x)^(1/2) - d^(1/2)))))/d - ((d - 
e*x)^(1/2)*((2*c*d^3)/(3*e^4) + (c*x^3)/(3*e) + (c*d*x^2)/(3*e^2) + (2*c*d 
^2*x)/(3*e^3)))/(d + e*x)^(1/2) - (((b*d)/e^2 + (b*x)/e)*(d - e*x)^(1/2))/ 
(d + e*x)^(1/2)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.99 \[ \int \frac {a+b x^2+c x^4}{x \sqrt {d-e x} \sqrt {d+e x}} \, dx=\frac {-3 \sqrt {e x +d}\, \sqrt {-e x +d}\, b d \,e^{2}-2 \sqrt {e x +d}\, \sqrt {-e x +d}\, c \,d^{3}-\sqrt {e x +d}\, \sqrt {-e x +d}\, c d \,e^{2} x^{2}-3 \,\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-e x +d}}{\sqrt {d}\, \sqrt {2}}\right )}{2}\right )-1\right ) a \,e^{4}+3 \,\mathrm {log}\left (-\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-e x +d}}{\sqrt {d}\, \sqrt {2}}\right )}{2}\right )+1\right ) a \,e^{4}-3 \,\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-e x +d}}{\sqrt {d}\, \sqrt {2}}\right )}{2}\right )-1\right ) a \,e^{4}+3 \,\mathrm {log}\left (\sqrt {2}+\tan \left (\frac {\mathit {asin} \left (\frac {\sqrt {-e x +d}}{\sqrt {d}\, \sqrt {2}}\right )}{2}\right )+1\right ) a \,e^{4}}{3 d \,e^{4}} \] Input:

int((c*x^4+b*x^2+a)/x/(-e*x+d)^(1/2)/(e*x+d)^(1/2),x)
 

Output:

( - 3*sqrt(d + e*x)*sqrt(d - e*x)*b*d*e**2 - 2*sqrt(d + e*x)*sqrt(d - e*x) 
*c*d**3 - sqrt(d + e*x)*sqrt(d - e*x)*c*d*e**2*x**2 - 3*log( - sqrt(2) + t 
an(asin(sqrt(d - e*x)/(sqrt(d)*sqrt(2)))/2) - 1)*a*e**4 + 3*log( - sqrt(2) 
 + tan(asin(sqrt(d - e*x)/(sqrt(d)*sqrt(2)))/2) + 1)*a*e**4 - 3*log(sqrt(2 
) + tan(asin(sqrt(d - e*x)/(sqrt(d)*sqrt(2)))/2) - 1)*a*e**4 + 3*log(sqrt( 
2) + tan(asin(sqrt(d - e*x)/(sqrt(d)*sqrt(2)))/2) + 1)*a*e**4)/(3*d*e**4)