\(\int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx\) [81]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 403 \[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {c+d x} \sqrt {e+f x}}{2 b (b c-a d) (b e-a f) (a+b x)^2}+\frac {\left (2 a^3 C d f+a b^2 (8 c C e+B d e+B c f-6 A d f)-b^3 (4 B c e-3 A (d e+c f))+a^2 b (2 B d f-5 C (d e+c f))\right ) \sqrt {c+d x} \sqrt {e+f x}}{4 b (b c-a d)^2 (b e-a f)^2 (a+b x)}-\frac {\left (2 (2 b c e-a (d e+c f)) \left (a B d f+\frac {a^2 C d f}{b}-2 a C (d e+c f)+b (2 c C e-A d f)\right )-\frac {(b d e+b c f-2 a d f) \left (a^2 C (d e+c f)-a b (4 c C e+B d e+B c f-4 A d f)+b^2 (4 B c e-3 A (d e+c f))\right )}{b}\right ) \text {arctanh}\left (\frac {\sqrt {b e-a f} \sqrt {c+d x}}{\sqrt {b c-a d} \sqrt {e+f x}}\right )}{4 (b c-a d)^{5/2} (b e-a f)^{5/2}} \] Output:

-1/2*(A*b^2-a*(B*b-C*a))*(d*x+c)^(1/2)*(f*x+e)^(1/2)/b/(-a*d+b*c)/(-a*f+b* 
e)/(b*x+a)^2+1/4*(2*a^3*C*d*f+a*b^2*(-6*A*d*f+B*c*f+B*d*e+8*C*c*e)-b^3*(4* 
B*c*e-3*A*(c*f+d*e))+a^2*b*(2*B*d*f-5*C*(c*f+d*e)))*(d*x+c)^(1/2)*(f*x+e)^ 
(1/2)/b/(-a*d+b*c)^2/(-a*f+b*e)^2/(b*x+a)-1/4*(2*(2*b*c*e-a*(c*f+d*e))*(a* 
B*d*f+a^2*C*d*f/b-2*a*C*(c*f+d*e)+b*(-A*d*f+2*C*c*e))-(-2*a*d*f+b*c*f+b*d* 
e)*(a^2*C*(c*f+d*e)-a*b*(-4*A*d*f+B*c*f+B*d*e+4*C*c*e)+b^2*(4*B*c*e-3*A*(c 
*f+d*e)))/b)*arctanh((-a*f+b*e)^(1/2)*(d*x+c)^(1/2)/(-a*d+b*c)^(1/2)/(f*x+ 
e)^(1/2))/(-a*d+b*c)^(5/2)/(-a*f+b*e)^(5/2)
 

Mathematica [A] (verified)

Time = 2.44 (sec) , antiderivative size = 420, normalized size of antiderivative = 1.04 \[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=\frac {1}{4} \left (-\frac {\sqrt {c+d x} \sqrt {e+f x} \left (4 b^3 B c e x-a b^2 (8 c C e x+B (-2 c e+d e x+c f x))+a^2 b (5 C d e x+B d (e-2 f x)+c (-6 C e+B f+5 C f x))+a^3 (-4 B d f+C (3 d e+3 c f-2 d f x))+A b \left (8 a^2 d f+b^2 (2 c e-3 d e x-3 c f x)+a b (-5 d e-5 c f+6 d f x)\right )\right )}{(b c-a d)^2 (b e-a f)^2 (a+b x)^2}+\frac {\left (b^2 \left (3 A d^2 e^2+2 c d e (-2 B e+A f)+c^2 \left (8 C e^2-4 B e f+3 A f^2\right )\right )+a b \left (d^2 e (B e-8 A f)+c^2 f (-8 C e+B f)-2 c d \left (4 C e^2-7 B e f+4 A f^2\right )\right )+a^2 \left (C \left (3 d^2 e^2+2 c d e f+3 c^2 f^2\right )+4 d f (2 A d f-B (d e+c f))\right )\right ) \arctan \left (\frac {\sqrt {b c-a d} \sqrt {e+f x}}{\sqrt {-b e+a f} \sqrt {c+d x}}\right )}{(b c-a d)^{5/2} (-b e+a f)^{5/2}}\right ) \] Input:

Integrate[(A + B*x + C*x^2)/((a + b*x)^3*Sqrt[c + d*x]*Sqrt[e + f*x]),x]
 

Output:

(-((Sqrt[c + d*x]*Sqrt[e + f*x]*(4*b^3*B*c*e*x - a*b^2*(8*c*C*e*x + B*(-2* 
c*e + d*e*x + c*f*x)) + a^2*b*(5*C*d*e*x + B*d*(e - 2*f*x) + c*(-6*C*e + B 
*f + 5*C*f*x)) + a^3*(-4*B*d*f + C*(3*d*e + 3*c*f - 2*d*f*x)) + A*b*(8*a^2 
*d*f + b^2*(2*c*e - 3*d*e*x - 3*c*f*x) + a*b*(-5*d*e - 5*c*f + 6*d*f*x)))) 
/((b*c - a*d)^2*(b*e - a*f)^2*(a + b*x)^2)) + ((b^2*(3*A*d^2*e^2 + 2*c*d*e 
*(-2*B*e + A*f) + c^2*(8*C*e^2 - 4*B*e*f + 3*A*f^2)) + a*b*(d^2*e*(B*e - 8 
*A*f) + c^2*f*(-8*C*e + B*f) - 2*c*d*(4*C*e^2 - 7*B*e*f + 4*A*f^2)) + a^2* 
(C*(3*d^2*e^2 + 2*c*d*e*f + 3*c^2*f^2) + 4*d*f*(2*A*d*f - B*(d*e + c*f)))) 
*ArcTan[(Sqrt[b*c - a*d]*Sqrt[e + f*x])/(Sqrt[-(b*e) + a*f]*Sqrt[c + d*x]) 
])/((b*c - a*d)^(5/2)*(-(b*e) + a*f)^(5/2)))/4
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 445, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2116, 27, 168, 27, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx\)

\(\Big \downarrow \) 2116

\(\displaystyle -\frac {\int -\frac {C (d e+c f) a^2-b (4 c C e+B d e+B c f-4 A d f) a+b^2 (4 B c e-3 A (d e+c f))+2 b \left (\frac {C d f a^2}{b}-2 C d e a-2 c C f a+B d f a+2 b c C e-A b d f\right ) x}{2 b (a+b x)^2 \sqrt {c+d x} \sqrt {e+f x}}dx}{2 (b c-a d) (b e-a f)}-\frac {\sqrt {c+d x} \sqrt {e+f x} \left (A b^2-a (b B-a C)\right )}{2 b (a+b x)^2 (b c-a d) (b e-a f)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {C (d e+c f) a^2-b (4 c C e+B d e+B c f-4 A d f) a+b^2 (4 B c e-3 A (d e+c f))+2 b \left (\frac {C d f a^2}{b}+B d f a-2 C (d e+c f) a+b (2 c C e-A d f)\right ) x}{(a+b x)^2 \sqrt {c+d x} \sqrt {e+f x}}dx}{4 b (b c-a d) (b e-a f)}-\frac {\sqrt {c+d x} \sqrt {e+f x} \left (A b^2-a (b B-a C)\right )}{2 b (a+b x)^2 (b c-a d) (b e-a f)}\)

\(\Big \downarrow \) 168

\(\displaystyle \frac {\frac {\sqrt {c+d x} \sqrt {e+f x} \left (2 a^3 C d f+a^2 b (2 B d f-5 C (c f+d e))+a b^2 (-6 A d f+B c f+B d e+8 c C e)-b^3 (4 B c e-3 A (c f+d e))\right )}{(a+b x) (b c-a d) (b e-a f)}-\frac {\int -\frac {b \left (\left (C \left (3 d^2 e^2+2 c d f e+3 c^2 f^2\right )+4 d f (2 A d f-B (d e+c f))\right ) a^2+b \left (-f (8 C e-B f) c^2-2 d \left (4 C e^2-7 B f e+4 A f^2\right ) c+d^2 e (B e-8 A f)\right ) a+b^2 \left (\left (8 C e^2-4 B f e+3 A f^2\right ) c^2-2 d e (2 B e-A f) c+3 A d^2 e^2\right )\right )}{2 (a+b x) \sqrt {c+d x} \sqrt {e+f x}}dx}{(b c-a d) (b e-a f)}}{4 b (b c-a d) (b e-a f)}-\frac {\sqrt {c+d x} \sqrt {e+f x} \left (A b^2-a (b B-a C)\right )}{2 b (a+b x)^2 (b c-a d) (b e-a f)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {b \left (a^2 \left (4 d f (2 A d f-B (c f+d e))+C \left (3 c^2 f^2+2 c d e f+3 d^2 e^2\right )\right )+a b \left (-2 c d \left (4 A f^2-7 B e f+4 C e^2\right )+d^2 e (B e-8 A f)+c^2 (-f) (8 C e-B f)\right )+b^2 \left (c^2 \left (3 A f^2-4 B e f+8 C e^2\right )-2 c d e (2 B e-A f)+3 A d^2 e^2\right )\right ) \int \frac {1}{(a+b x) \sqrt {c+d x} \sqrt {e+f x}}dx}{2 (b c-a d) (b e-a f)}+\frac {\sqrt {c+d x} \sqrt {e+f x} \left (2 a^3 C d f+a^2 b (2 B d f-5 C (c f+d e))+a b^2 (-6 A d f+B c f+B d e+8 c C e)-b^3 (4 B c e-3 A (c f+d e))\right )}{(a+b x) (b c-a d) (b e-a f)}}{4 b (b c-a d) (b e-a f)}-\frac {\sqrt {c+d x} \sqrt {e+f x} \left (A b^2-a (b B-a C)\right )}{2 b (a+b x)^2 (b c-a d) (b e-a f)}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {\frac {b \left (a^2 \left (4 d f (2 A d f-B (c f+d e))+C \left (3 c^2 f^2+2 c d e f+3 d^2 e^2\right )\right )+a b \left (-2 c d \left (4 A f^2-7 B e f+4 C e^2\right )+d^2 e (B e-8 A f)+c^2 (-f) (8 C e-B f)\right )+b^2 \left (c^2 \left (3 A f^2-4 B e f+8 C e^2\right )-2 c d e (2 B e-A f)+3 A d^2 e^2\right )\right ) \int \frac {1}{-b c+a d+\frac {(b e-a f) (c+d x)}{e+f x}}d\frac {\sqrt {c+d x}}{\sqrt {e+f x}}}{(b c-a d) (b e-a f)}+\frac {\sqrt {c+d x} \sqrt {e+f x} \left (2 a^3 C d f+a^2 b (2 B d f-5 C (c f+d e))+a b^2 (-6 A d f+B c f+B d e+8 c C e)-b^3 (4 B c e-3 A (c f+d e))\right )}{(a+b x) (b c-a d) (b e-a f)}}{4 b (b c-a d) (b e-a f)}-\frac {\sqrt {c+d x} \sqrt {e+f x} \left (A b^2-a (b B-a C)\right )}{2 b (a+b x)^2 (b c-a d) (b e-a f)}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\sqrt {c+d x} \sqrt {e+f x} \left (2 a^3 C d f+a^2 b (2 B d f-5 C (c f+d e))+a b^2 (-6 A d f+B c f+B d e+8 c C e)-b^3 (4 B c e-3 A (c f+d e))\right )}{(a+b x) (b c-a d) (b e-a f)}-\frac {b \text {arctanh}\left (\frac {\sqrt {c+d x} \sqrt {b e-a f}}{\sqrt {e+f x} \sqrt {b c-a d}}\right ) \left (a^2 \left (4 d f (2 A d f-B (c f+d e))+C \left (3 c^2 f^2+2 c d e f+3 d^2 e^2\right )\right )+a b \left (-2 c d \left (4 A f^2-7 B e f+4 C e^2\right )+d^2 e (B e-8 A f)+c^2 (-f) (8 C e-B f)\right )+b^2 \left (c^2 \left (3 A f^2-4 B e f+8 C e^2\right )-2 c d e (2 B e-A f)+3 A d^2 e^2\right )\right )}{(b c-a d)^{3/2} (b e-a f)^{3/2}}}{4 b (b c-a d) (b e-a f)}-\frac {\sqrt {c+d x} \sqrt {e+f x} \left (A b^2-a (b B-a C)\right )}{2 b (a+b x)^2 (b c-a d) (b e-a f)}\)

Input:

Int[(A + B*x + C*x^2)/((a + b*x)^3*Sqrt[c + d*x]*Sqrt[e + f*x]),x]
 

Output:

-1/2*((A*b^2 - a*(b*B - a*C))*Sqrt[c + d*x]*Sqrt[e + f*x])/(b*(b*c - a*d)* 
(b*e - a*f)*(a + b*x)^2) + (((2*a^3*C*d*f + a*b^2*(8*c*C*e + B*d*e + B*c*f 
 - 6*A*d*f) - b^3*(4*B*c*e - 3*A*(d*e + c*f)) + a^2*b*(2*B*d*f - 5*C*(d*e 
+ c*f)))*Sqrt[c + d*x]*Sqrt[e + f*x])/((b*c - a*d)*(b*e - a*f)*(a + b*x)) 
- (b*(b^2*(3*A*d^2*e^2 - 2*c*d*e*(2*B*e - A*f) + c^2*(8*C*e^2 - 4*B*e*f + 
3*A*f^2)) + a*b*(d^2*e*(B*e - 8*A*f) - c^2*f*(8*C*e - B*f) - 2*c*d*(4*C*e^ 
2 - 7*B*e*f + 4*A*f^2)) + a^2*(C*(3*d^2*e^2 + 2*c*d*e*f + 3*c^2*f^2) + 4*d 
*f*(2*A*d*f - B*(d*e + c*f))))*ArcTanh[(Sqrt[b*e - a*f]*Sqrt[c + d*x])/(Sq 
rt[b*c - a*d]*Sqrt[e + f*x])])/((b*c - a*d)^(3/2)*(b*e - a*f)^(3/2)))/(4*b 
*(b*c - a*d)*(b*e - a*f))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 168
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 2116
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_ 
.)*(x_))^(p_.), x_Symbol] :> With[{Qx = PolynomialQuotient[Px, a + b*x, x], 
 R = PolynomialRemainder[Px, a + b*x, x]}, Simp[b*R*(a + b*x)^(m + 1)*(c + 
d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Si 
mp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n* 
(e + f*x)^p*ExpandToSum[(m + 1)*(b*c - a*d)*(b*e - a*f)*Qx + a*d*f*R*(m + 1 
) - b*R*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*R*(m + n + p + 3)*x, x] 
, x], x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && PolyQ[Px, x] && ILtQ[m, 
-1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(7118\) vs. \(2(377)=754\).

Time = 1.12 (sec) , antiderivative size = 7119, normalized size of antiderivative = 17.67

method result size
default \(\text {Expression too large to display}\) \(7119\)

Input:

int((C*x^2+B*x+A)/(b*x+a)^3/(d*x+c)^(1/2)/(f*x+e)^(1/2),x,method=_RETURNVE 
RBOSE)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1998 vs. \(2 (376) = 752\).

Time = 157.37 (sec) , antiderivative size = 4058, normalized size of antiderivative = 10.07 \[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=\text {Too large to display} \] Input:

integrate((C*x^2+B*x+A)/(b*x+a)^3/(d*x+c)^(1/2)/(f*x+e)^(1/2),x, algorithm 
="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=\text {Timed out} \] Input:

integrate((C*x**2+B*x+A)/(b*x+a)**3/(d*x+c)**(1/2)/(f*x+e)**(1/2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((C*x^2+B*x+A)/(b*x+a)^3/(d*x+c)^(1/2)/(f*x+e)^(1/2),x, algorithm 
="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume((a*d-b*c)>0)', see `assume?` for 
 more deta
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7939 vs. \(2 (376) = 752\).

Time = 33.36 (sec) , antiderivative size = 7939, normalized size of antiderivative = 19.70 \[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=\text {Too large to display} \] Input:

integrate((C*x^2+B*x+A)/(b*x+a)^3/(d*x+c)^(1/2)/(f*x+e)^(1/2),x, algorithm 
="giac")
 

Output:

-1/4*(8*sqrt(d*f)*C*b^2*c^2*d^2*e^2 - 8*sqrt(d*f)*C*a*b*c*d^3*e^2 - 4*sqrt 
(d*f)*B*b^2*c*d^3*e^2 + 3*sqrt(d*f)*C*a^2*d^4*e^2 + sqrt(d*f)*B*a*b*d^4*e^ 
2 + 3*sqrt(d*f)*A*b^2*d^4*e^2 - 8*sqrt(d*f)*C*a*b*c^2*d^2*e*f - 4*sqrt(d*f 
)*B*b^2*c^2*d^2*e*f + 2*sqrt(d*f)*C*a^2*c*d^3*e*f + 14*sqrt(d*f)*B*a*b*c*d 
^3*e*f + 2*sqrt(d*f)*A*b^2*c*d^3*e*f - 4*sqrt(d*f)*B*a^2*d^4*e*f - 8*sqrt( 
d*f)*A*a*b*d^4*e*f + 3*sqrt(d*f)*C*a^2*c^2*d^2*f^2 + sqrt(d*f)*B*a*b*c^2*d 
^2*f^2 + 3*sqrt(d*f)*A*b^2*c^2*d^2*f^2 - 4*sqrt(d*f)*B*a^2*c*d^3*f^2 - 8*s 
qrt(d*f)*A*a*b*c*d^3*f^2 + 8*sqrt(d*f)*A*a^2*d^4*f^2)*arctan(-1/2*(b*d^2*e 
 + b*c*d*f - 2*a*d^2*f - (sqrt(d*f)*sqrt(d*x + c) - sqrt(d^2*e + (d*x + c) 
*d*f - c*d*f))^2*b)/(sqrt(-b^2*c*d*e*f + a*b*d^2*e*f + a*b*c*d*f^2 - a^2*d 
^2*f^2)*d))/((b^4*c^2*e^2*abs(d) - 2*a*b^3*c*d*e^2*abs(d) + a^2*b^2*d^2*e^ 
2*abs(d) - 2*a*b^3*c^2*e*f*abs(d) + 4*a^2*b^2*c*d*e*f*abs(d) - 2*a^3*b*d^2 
*e*f*abs(d) + a^2*b^2*c^2*f^2*abs(d) - 2*a^3*b*c*d*f^2*abs(d) + a^4*d^2*f^ 
2*abs(d))*sqrt(-b^2*c*d*e*f + a*b*d^2*e*f + a*b*c*d*f^2 - a^2*d^2*f^2)*d) 
+ 1/2*(8*sqrt(d*f)*C*a*b^4*c*d^9*e^5 - 4*sqrt(d*f)*B*b^5*c*d^9*e^5 - 5*sqr 
t(d*f)*C*a^2*b^3*d^10*e^5 + sqrt(d*f)*B*a*b^4*d^10*e^5 + 3*sqrt(d*f)*A*b^5 
*d^10*e^5 - 32*sqrt(d*f)*C*a*b^4*c^2*d^8*e^4*f + 16*sqrt(d*f)*B*b^5*c^2*d^ 
8*e^4*f + 15*sqrt(d*f)*C*a^2*b^3*c*d^9*e^4*f - 3*sqrt(d*f)*B*a*b^4*c*d^9*e 
^4*f - 9*sqrt(d*f)*A*b^5*c*d^9*e^4*f + 2*sqrt(d*f)*C*a^3*b^2*d^10*e^4*f + 
2*sqrt(d*f)*B*a^2*b^3*d^10*e^4*f - 6*sqrt(d*f)*A*a*b^4*d^10*e^4*f + 48*...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=\text {Hanged} \] Input:

int((A + B*x + C*x^2)/((e + f*x)^(1/2)*(a + b*x)^3*(c + d*x)^(1/2)),x)
 

Output:

\text{Hanged}
 

Reduce [F]

\[ \int \frac {A+B x+C x^2}{(a+b x)^3 \sqrt {c+d x} \sqrt {e+f x}} \, dx=\int \frac {C \,x^{2}+B x +A}{\left (b x +a \right )^{3} \sqrt {d x +c}\, \sqrt {f x +e}}d x \] Input:

int((C*x^2+B*x+A)/(b*x+a)^3/(d*x+c)^(1/2)/(f*x+e)^(1/2),x)
 

Output:

int((C*x^2+B*x+A)/(b*x+a)^3/(d*x+c)^(1/2)/(f*x+e)^(1/2),x)