\(\int \frac {1}{(a+b x^2)^{7/6}} \, dx\) [110]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 11, antiderivative size = 579 \[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\frac {3 x}{a \sqrt [6]{a+b x^2}}+\frac {3 \left (1+\sqrt {3}\right ) x \sqrt [6]{a+b x^2}}{a \left (\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}\right )}+\frac {3 \sqrt [4]{3} \sqrt [6]{a+b x^2} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}\right )^2}} E\left (\arccos \left (\frac {\sqrt [3]{a}-\left (1-\sqrt {3}\right ) \sqrt [3]{a+b x^2}}{\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{a^{2/3} b x \sqrt {-\frac {\sqrt [3]{a+b x^2} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}\right )^2}}}+\frac {3^{3/4} \left (1-\sqrt {3}\right ) \sqrt [6]{a+b x^2} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}-\left (1-\sqrt {3}\right ) \sqrt [3]{a+b x^2}}{\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2 a^{2/3} b x \sqrt {-\frac {\sqrt [3]{a+b x^2} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}\right )^2}}} \] Output:

3*x/a/(b*x^2+a)^(1/6)+3*(1+3^(1/2))*x*(b*x^2+a)^(1/6)/a/(a^(1/3)-(1+3^(1/2 
))*(b*x^2+a)^(1/3))+3*3^(1/4)*(b*x^2+a)^(1/6)*(a^(1/3)-(b*x^2+a)^(1/3))*(( 
a^(2/3)+a^(1/3)*(b*x^2+a)^(1/3)+(b*x^2+a)^(2/3))/(a^(1/3)-(1+3^(1/2))*(b*x 
^2+a)^(1/3))^2)^(1/2)*EllipticE((1-(a^(1/3)-(1-3^(1/2))*(b*x^2+a)^(1/3))^2 
/(a^(1/3)-(1+3^(1/2))*(b*x^2+a)^(1/3))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))/a 
^(2/3)/b/x/(-(b*x^2+a)^(1/3)*(a^(1/3)-(b*x^2+a)^(1/3))/(a^(1/3)-(1+3^(1/2) 
)*(b*x^2+a)^(1/3))^2)^(1/2)+1/2*3^(3/4)*(1-3^(1/2))*(b*x^2+a)^(1/6)*(a^(1/ 
3)-(b*x^2+a)^(1/3))*((a^(2/3)+a^(1/3)*(b*x^2+a)^(1/3)+(b*x^2+a)^(2/3))/(a^ 
(1/3)-(1+3^(1/2))*(b*x^2+a)^(1/3))^2)^(1/2)*InverseJacobiAM(arccos((a^(1/3 
)-(1-3^(1/2))*(b*x^2+a)^(1/3))/(a^(1/3)-(1+3^(1/2))*(b*x^2+a)^(1/3))),1/4* 
6^(1/2)+1/4*2^(1/2))/a^(2/3)/b/x/(-(b*x^2+a)^(1/3)*(a^(1/3)-(b*x^2+a)^(1/3 
))/(a^(1/3)-(1+3^(1/2))*(b*x^2+a)^(1/3))^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.03 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.08 \[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\frac {x \sqrt [6]{1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {7}{6},\frac {3}{2},-\frac {b x^2}{a}\right )}{a \sqrt [6]{a+b x^2}} \] Input:

Integrate[(a + b*x^2)^(-7/6),x]
 

Output:

(x*(1 + (b*x^2)/a)^(1/6)*Hypergeometric2F1[1/2, 7/6, 3/2, -((b*x^2)/a)])/( 
a*(a + b*x^2)^(1/6))
 

Rubi [A] (warning: unable to verify)

Time = 0.38 (sec) , antiderivative size = 681, normalized size of antiderivative = 1.18, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {214, 233, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx\)

\(\Big \downarrow \) 214

\(\displaystyle \frac {\int \frac {1}{\sqrt [3]{1-\frac {b x^2}{b x^2+a}}}d\frac {x}{\sqrt {b x^2+a}}}{\left (\frac {a}{a+b x^2}\right )^{2/3} \left (a+b x^2\right )^{2/3}}\)

\(\Big \downarrow \) 233

\(\displaystyle -\frac {3 \sqrt {-\frac {b x^2}{a+b x^2}} \int \frac {\sqrt [3]{1-\frac {b x^2}{b x^2+a}}}{\sqrt {\frac {x^3}{\left (b x^2+a\right )^{3/2}}-1}}d\sqrt [3]{1-\frac {b x^2}{b x^2+a}}}{2 b x \left (\frac {a}{a+b x^2}\right )^{2/3} \sqrt [6]{a+b x^2}}\)

\(\Big \downarrow \) 833

\(\displaystyle -\frac {3 \sqrt {-\frac {b x^2}{a+b x^2}} \left (\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {\frac {x^3}{\left (b x^2+a\right )^{3/2}}-1}}d\sqrt [3]{1-\frac {b x^2}{b x^2+a}}-\int \frac {-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}+\sqrt {3}+1}{\sqrt {\frac {x^3}{\left (b x^2+a\right )^{3/2}}-1}}d\sqrt [3]{1-\frac {b x^2}{b x^2+a}}\right )}{2 b x \left (\frac {a}{a+b x^2}\right )^{2/3} \sqrt [6]{a+b x^2}}\)

\(\Big \downarrow \) 760

\(\displaystyle -\frac {3 \sqrt {-\frac {b x^2}{a+b x^2}} \left (-\int \frac {-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}+\sqrt {3}+1}{\sqrt {\frac {x^3}{\left (b x^2+a\right )^{3/2}}-1}}d\sqrt [3]{1-\frac {b x^2}{b x^2+a}}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}\right ) \sqrt {\frac {\frac {x^2}{a+b x^2}+\sqrt [3]{1-\frac {b x^2}{a+b x^2}}+1}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}+\sqrt {3}+1}{-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x^3}{\left (a+b x^2\right )^{3/2}}-1} \sqrt {-\frac {1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}}}\right )}{2 b x \left (\frac {a}{a+b x^2}\right )^{2/3} \sqrt [6]{a+b x^2}}\)

\(\Big \downarrow \) 2418

\(\displaystyle -\frac {3 \sqrt {-\frac {b x^2}{a+b x^2}} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}\right ) \sqrt {\frac {\frac {x^2}{a+b x^2}+\sqrt [3]{1-\frac {b x^2}{a+b x^2}}+1}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}+\sqrt {3}+1}{-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x^3}{\left (a+b x^2\right )^{3/2}}-1} \sqrt {-\frac {1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}\right ) \sqrt {\frac {\frac {x^2}{a+b x^2}+\sqrt [3]{1-\frac {b x^2}{a+b x^2}}+1}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}+\sqrt {3}+1}{-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {\frac {x^3}{\left (a+b x^2\right )^{3/2}}-1} \sqrt {-\frac {1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}}}-\frac {2 \sqrt {\frac {x^3}{\left (a+b x^2\right )^{3/2}}-1}}{-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1}\right )}{2 b x \left (\frac {a}{a+b x^2}\right )^{2/3} \sqrt [6]{a+b x^2}}\)

Input:

Int[(a + b*x^2)^(-7/6),x]
 

Output:

(-3*Sqrt[-((b*x^2)/(a + b*x^2))]*((-2*Sqrt[-1 + x^3/(a + b*x^2)^(3/2)])/(1 
 - Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3)) + (3^(1/4)*Sqrt[2 + Sqrt[3]] 
*(1 - (1 - (b*x^2)/(a + b*x^2))^(1/3))*Sqrt[(1 + x^2/(a + b*x^2) + (1 - (b 
*x^2)/(a + b*x^2))^(1/3))/(1 - Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3))^ 
2]*EllipticE[ArcSin[(1 + Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3))/(1 - S 
qrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3))], -7 + 4*Sqrt[3]])/(Sqrt[-1 + x^ 
3/(a + b*x^2)^(3/2)]*Sqrt[-((1 - (1 - (b*x^2)/(a + b*x^2))^(1/3))/(1 - Sqr 
t[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3))^2)]) - (2*Sqrt[2 - Sqrt[3]]*(1 + S 
qrt[3])*(1 - (1 - (b*x^2)/(a + b*x^2))^(1/3))*Sqrt[(1 + x^2/(a + b*x^2) + 
(1 - (b*x^2)/(a + b*x^2))^(1/3))/(1 - Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^ 
(1/3))^2]*EllipticF[ArcSin[(1 + Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3)) 
/(1 - Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3))], -7 + 4*Sqrt[3]])/(3^(1/ 
4)*Sqrt[-1 + x^3/(a + b*x^2)^(3/2)]*Sqrt[-((1 - (1 - (b*x^2)/(a + b*x^2))^ 
(1/3))/(1 - Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3))^2)])))/(2*b*x*(a/(a 
 + b*x^2))^(2/3)*(a + b*x^2)^(1/6))
 

Defintions of rubi rules used

rule 214
Int[((a_) + (b_.)*(x_)^2)^(-7/6), x_Symbol] :> Simp[1/((a + b*x^2)^(2/3)*(a 
/(a + b*x^2))^(2/3))   Subst[Int[1/(1 - b*x^2)^(1/3), x], x, x/Sqrt[a + b*x 
^2]], x] /; FreeQ[{a, b}, x]
 

rule 233
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[x/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [F]

\[\int \frac {1}{\left (b \,x^{2}+a \right )^{\frac {7}{6}}}d x\]

Input:

int(1/(b*x^2+a)^(7/6),x)
 

Output:

int(1/(b*x^2+a)^(7/6),x)
 

Fricas [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {7}{6}}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(7/6),x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^(5/6)/(b^2*x^4 + 2*a*b*x^2 + a^2), x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.61 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.04 \[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\frac {x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {7}{6} \\ \frac {3}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{a^{\frac {7}{6}}} \] Input:

integrate(1/(b*x**2+a)**(7/6),x)
 

Output:

x*hyper((1/2, 7/6), (3/2,), b*x**2*exp_polar(I*pi)/a)/a**(7/6)
 

Maxima [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {7}{6}}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(7/6),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^(-7/6), x)
 

Giac [F]

\[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {7}{6}}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(7/6),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

integrate((b*x^2 + a)^(-7/6), x)
 

Mupad [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.06 \[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\frac {x\,{\left (\frac {b\,x^2}{a}+1\right )}^{7/6}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{6};\ \frac {3}{2};\ -\frac {b\,x^2}{a}\right )}{{\left (b\,x^2+a\right )}^{7/6}} \] Input:

int(1/(a + b*x^2)^(7/6),x)
 

Output:

(x*((b*x^2)/a + 1)^(7/6)*hypergeom([1/2, 7/6], 3/2, -(b*x^2)/a))/(a + b*x^ 
2)^(7/6)
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.06 \[ \int \frac {1}{\left (a+b x^2\right )^{7/6}} \, dx=\frac {\sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {b x}{\sqrt {b}\, \sqrt {a}}\right )}{\left (b \,x^{2}+a \right )^{\frac {1}{6}} a b} \] Input:

int(1/(b*x^2+a)^(7/6),x)
 

Output:

(sqrt(b)*sqrt(a)*(a + b*x**2)**(5/6)*atan((b*x)/(sqrt(b)*sqrt(a))))/(a*b*( 
a + b*x**2))