\(\int \frac {1}{\sqrt [3]{a+b x^2}} \, dx\) [73]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 529 \[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=-\frac {3 x}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}+\frac {3 \sqrt [4]{3} \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} E\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}\right )|-7+4 \sqrt {3}\right )}{2 b x \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}-\frac {\sqrt {2} 3^{3/4} \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}\right ),-7+4 \sqrt {3}\right )}{b x \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}} \] Output:

-3*x/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))+3/2*3^(1/4)*(1/2*6^(1/2)+1/2*2^ 
(1/2))*a^(1/3)*(a^(1/3)-(b*x^2+a)^(1/3))*((a^(2/3)+a^(1/3)*(b*x^2+a)^(1/3) 
+(b*x^2+a)^(2/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))^2)^(1/2)*EllipticE 
(((1+3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3 
)),2*I-I*3^(1/2))/b/x/(-a^(1/3)*(a^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1/2))*a^( 
1/3)-(b*x^2+a)^(1/3))^2)^(1/2)-2^(1/2)*3^(3/4)*a^(1/3)*(a^(1/3)-(b*x^2+a)^ 
(1/3))*((a^(2/3)+a^(1/3)*(b*x^2+a)^(1/3)+(b*x^2+a)^(2/3))/((1-3^(1/2))*a^( 
1/3)-(b*x^2+a)^(1/3))^2)^(1/2)*EllipticF(((1+3^(1/2))*a^(1/3)-(b*x^2+a)^(1 
/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3)),2*I-I*3^(1/2))/b/x/(-a^(1/3)*(a 
^(1/3)-(b*x^2+a)^(1/3))/((1-3^(1/2))*a^(1/3)-(b*x^2+a)^(1/3))^2)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.77 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.09 \[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=\frac {x \sqrt [3]{1+\frac {b x^2}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {3}{2},-\frac {b x^2}{a}\right )}{\sqrt [3]{a+b x^2}} \] Input:

Integrate[(a + b*x^2)^(-1/3),x]
 

Output:

(x*(1 + (b*x^2)/a)^(1/3)*Hypergeometric2F1[1/3, 1/2, 3/2, -((b*x^2)/a)])/( 
a + b*x^2)^(1/3)
 

Rubi [A] (warning: unable to verify)

Time = 0.44 (sec) , antiderivative size = 574, normalized size of antiderivative = 1.09, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {233, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx\)

\(\Big \downarrow \) 233

\(\displaystyle \frac {3 \sqrt {b x^2} \int \frac {\sqrt [3]{b x^2+a}}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}}{2 b x}\)

\(\Big \downarrow \) 833

\(\displaystyle \frac {3 \sqrt {b x^2} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}-\int \frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}\right )}{2 b x}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {3 \sqrt {b x^2} \left (-\int \frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\sqrt {b x^2}}d\sqrt [3]{b x^2+a}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {b x^2} \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}\right )}{2 b x}\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {3 \sqrt {b x^2} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {b x^2} \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}} E\left (\arcsin \left (\frac {\left (1+\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{b x^2+a}}\right )|-7+4 \sqrt {3}\right )}{\sqrt {b x^2} \sqrt {-\frac {\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )^2}}}-\frac {2 \sqrt {b x^2}}{\left (1-\sqrt {3}\right ) \sqrt [3]{a}-\sqrt [3]{a+b x^2}}\right )}{2 b x}\)

Input:

Int[(a + b*x^2)^(-1/3),x]
 

Output:

(3*Sqrt[b*x^2]*((-2*Sqrt[b*x^2])/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3 
)) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*a^(1/3)*(a^(1/3) - (a + b*x^2)^(1/3))*Sqrt 
[(a^(2/3) + a^(1/3)*(a + b*x^2)^(1/3) + (a + b*x^2)^(2/3))/((1 - Sqrt[3])* 
a^(1/3) - (a + b*x^2)^(1/3))^2]*EllipticE[ArcSin[((1 + Sqrt[3])*a^(1/3) - 
(a + b*x^2)^(1/3))/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))], -7 + 4*Sq 
rt[3]])/(Sqrt[b*x^2]*Sqrt[-((a^(1/3)*(a^(1/3) - (a + b*x^2)^(1/3)))/((1 - 
Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))^2)]) - (2*Sqrt[2 - Sqrt[3]]*(1 + Sqr 
t[3])*a^(1/3)*(a^(1/3) - (a + b*x^2)^(1/3))*Sqrt[(a^(2/3) + a^(1/3)*(a + b 
*x^2)^(1/3) + (a + b*x^2)^(2/3))/((1 - Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3 
))^2]*EllipticF[ArcSin[((1 + Sqrt[3])*a^(1/3) - (a + b*x^2)^(1/3))/((1 - S 
qrt[3])*a^(1/3) - (a + b*x^2)^(1/3))], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[b*x^ 
2]*Sqrt[-((a^(1/3)*(a^(1/3) - (a + b*x^2)^(1/3)))/((1 - Sqrt[3])*a^(1/3) - 
 (a + b*x^2)^(1/3))^2)])))/(2*b*x)
 

Defintions of rubi rules used

rule 233
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[x/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [F]

\[\int \frac {1}{\left (b \,x^{2}+a \right )^{\frac {1}{3}}}d x\]

Input:

int(1/(b*x^2+a)^(1/3),x)
 

Output:

int(1/(b*x^2+a)^(1/3),x)
 

Fricas [F]

\[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(1/3),x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^(-1/3), x)
 

Sympy [A] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.05 \[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=\frac {x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {3}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{\sqrt [3]{a}} \] Input:

integrate(1/(b*x**2+a)**(1/3),x)
 

Output:

x*hyper((1/3, 1/2), (3/2,), b*x**2*exp_polar(I*pi)/a)/a**(1/3)
 

Maxima [F]

\[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(1/3),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^(-1/3), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate(1/(b*x^2+a)^(1/3),x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^(-1/3), x)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.07 \[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=\frac {x\,{\left (\frac {b\,x^2}{a}+1\right )}^{1/3}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{2};\ \frac {3}{2};\ -\frac {b\,x^2}{a}\right )}{{\left (b\,x^2+a\right )}^{1/3}} \] Input:

int(1/(a + b*x^2)^(1/3),x)
 

Output:

(x*((b*x^2)/a + 1)^(1/3)*hypergeom([1/3, 1/2], 3/2, -(b*x^2)/a))/(a + b*x^ 
2)^(1/3)
 

Reduce [F]

\[ \int \frac {1}{\sqrt [3]{a+b x^2}} \, dx=\int \frac {1}{\left (b \,x^{2}+a \right )^{\frac {1}{3}}}d x \] Input:

int(1/(b*x^2+a)^(1/3),x)
 

Output:

int(1/(a + b*x**2)**(1/3),x)