\(\int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx\) [1016]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F(-1)]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 116 \[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}-\frac {a \sqrt {c} \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{4 b^{3/4}}+\frac {a \sqrt {c} \text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{4 b^{3/4}} \] Output:

1/2*(c*x)^(3/2)*(b*x^2+a)^(1/4)/c-1/4*a*c^(1/2)*arctan(b^(1/4)*(c*x)^(1/2) 
/c^(1/2)/(b*x^2+a)^(1/4))/b^(3/4)+1/4*a*c^(1/2)*arctanh(b^(1/4)*(c*x)^(1/2 
)/c^(1/2)/(b*x^2+a)^(1/4))/b^(3/4)
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.83 \[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\frac {\sqrt {c x} \left (2 b^{3/4} x^{3/2} \sqrt [4]{a+b x^2}-a \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a+b x^2}}\right )+a \text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a+b x^2}}\right )\right )}{4 b^{3/4} \sqrt {x}} \] Input:

Integrate[Sqrt[c*x]*(a + b*x^2)^(1/4),x]
 

Output:

(Sqrt[c*x]*(2*b^(3/4)*x^(3/2)*(a + b*x^2)^(1/4) - a*ArcTan[(b^(1/4)*Sqrt[x 
])/(a + b*x^2)^(1/4)] + a*ArcTanh[(b^(1/4)*Sqrt[x])/(a + b*x^2)^(1/4)]))/( 
4*b^(3/4)*Sqrt[x])
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {248, 266, 854, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx\)

\(\Big \downarrow \) 248

\(\displaystyle \frac {1}{4} a \int \frac {\sqrt {c x}}{\left (b x^2+a\right )^{3/4}}dx+\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {a \int \frac {c x}{\left (b x^2+a\right )^{3/4}}d\sqrt {c x}}{2 c}+\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}\)

\(\Big \downarrow \) 854

\(\displaystyle \frac {a \int \frac {c^3 x}{c^2-b c^2 x^2}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{2 c}+\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} a c \int \frac {c x}{c^2-b c^2 x^2}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}+\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}\)

\(\Big \downarrow \) 827

\(\displaystyle \frac {1}{2} a c \left (\frac {\int \frac {1}{c-\sqrt {b} c x}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{2 \sqrt {b}}-\frac {\int \frac {1}{\sqrt {b} x c+c}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{2 \sqrt {b}}\right )+\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{2} a c \left (\frac {\int \frac {1}{c-\sqrt {b} c x}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{2 \sqrt {b}}-\frac {\arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{2 b^{3/4} \sqrt {c}}\right )+\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} a c \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{2 b^{3/4} \sqrt {c}}-\frac {\arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{2 b^{3/4} \sqrt {c}}\right )+\frac {(c x)^{3/2} \sqrt [4]{a+b x^2}}{2 c}\)

Input:

Int[Sqrt[c*x]*(a + b*x^2)^(1/4),x]
 

Output:

((c*x)^(3/2)*(a + b*x^2)^(1/4))/(2*c) + (a*c*(-1/2*ArcTan[(b^(1/4)*Sqrt[c* 
x])/(Sqrt[c]*(a + b*x^2)^(1/4))]/(b^(3/4)*Sqrt[c]) + ArcTanh[(b^(1/4)*Sqrt 
[c*x])/(Sqrt[c]*(a + b*x^2)^(1/4))]/(2*b^(3/4)*Sqrt[c])))/2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 248
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 2*p + 1))), x] + Simp[2*a*(p/(m + 2*p + 1)) 
  Int[(c*x)^m*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x] && GtQ[ 
p, 0] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 
Maple [F]

\[\int \sqrt {c x}\, \left (b \,x^{2}+a \right )^{\frac {1}{4}}d x\]

Input:

int((c*x)^(1/2)*(b*x^2+a)^(1/4),x)
 

Output:

int((c*x)^(1/2)*(b*x^2+a)^(1/4),x)
 

Fricas [F(-1)]

Timed out. \[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\text {Timed out} \] Input:

integrate((c*x)^(1/2)*(b*x^2+a)^(1/4),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.91 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.40 \[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\frac {\sqrt [4]{a} \sqrt {c} x^{\frac {3}{2}} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (\frac {7}{4}\right )} \] Input:

integrate((c*x)**(1/2)*(b*x**2+a)**(1/4),x)
 

Output:

a**(1/4)*sqrt(c)*x**(3/2)*gamma(3/4)*hyper((-1/4, 3/4), (7/4,), b*x**2*exp 
_polar(I*pi)/a)/(2*gamma(7/4))
 

Maxima [F]

\[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\int { {\left (b x^{2} + a\right )}^{\frac {1}{4}} \sqrt {c x} \,d x } \] Input:

integrate((c*x)^(1/2)*(b*x^2+a)^(1/4),x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^(1/4)*sqrt(c*x), x)
 

Giac [F]

\[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\int { {\left (b x^{2} + a\right )}^{\frac {1}{4}} \sqrt {c x} \,d x } \] Input:

integrate((c*x)^(1/2)*(b*x^2+a)^(1/4),x, algorithm="giac")
 

Output:

integrate((b*x^2 + a)^(1/4)*sqrt(c*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\int \sqrt {c\,x}\,{\left (b\,x^2+a\right )}^{1/4} \,d x \] Input:

int((c*x)^(1/2)*(a + b*x^2)^(1/4),x)
 

Output:

int((c*x)^(1/2)*(a + b*x^2)^(1/4), x)
 

Reduce [F]

\[ \int \sqrt {c x} \sqrt [4]{a+b x^2} \, dx=\frac {\sqrt {c}\, \left (2 \sqrt {x}\, \left (b \,x^{2}+a \right )^{\frac {1}{4}} x +\left (\int \frac {\sqrt {x}}{\left (b \,x^{2}+a \right )^{\frac {3}{4}}}d x \right ) a \right )}{4} \] Input:

int((c*x)^(1/2)*(b*x^2+a)^(1/4),x)
 

Output:

(sqrt(c)*(2*sqrt(x)*(a + b*x**2)**(1/4)*x + int((sqrt(x)*(a + b*x**2)**(1/ 
4))/(a + b*x**2),x)*a))/4