\(\int \frac {(a+b x^2)^{7/6}}{x^6} \, dx\) [1096]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [C] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 313 \[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=-\frac {7 b \sqrt [6]{a+b x^2}}{45 x^3}-\frac {7 b^2 \sqrt [6]{a+b x^2}}{135 a x}-\frac {\left (a+b x^2\right )^{7/6}}{5 x^5}-\frac {7 b^2 \sqrt [6]{a+b x^2} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right ) \sqrt {\frac {a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x^2}+\left (a+b x^2\right )^{2/3}}{\left (\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}-\left (1-\sqrt {3}\right ) \sqrt [3]{a+b x^2}}{\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{135 \sqrt [4]{3} a^{4/3} x \sqrt {-\frac {\sqrt [3]{a+b x^2} \left (\sqrt [3]{a}-\sqrt [3]{a+b x^2}\right )}{\left (\sqrt [3]{a}-\left (1+\sqrt {3}\right ) \sqrt [3]{a+b x^2}\right )^2}}} \] Output:

-7/45*b*(b*x^2+a)^(1/6)/x^3-7/135*b^2*(b*x^2+a)^(1/6)/a/x-1/5*(b*x^2+a)^(7 
/6)/x^5-7/405*b^2*(b*x^2+a)^(1/6)*(a^(1/3)-(b*x^2+a)^(1/3))*((a^(2/3)+a^(1 
/3)*(b*x^2+a)^(1/3)+(b*x^2+a)^(2/3))/(a^(1/3)-(1+3^(1/2))*(b*x^2+a)^(1/3)) 
^2)^(1/2)*InverseJacobiAM(arccos((a^(1/3)-(1-3^(1/2))*(b*x^2+a)^(1/3))/(a^ 
(1/3)-(1+3^(1/2))*(b*x^2+a)^(1/3))),1/4*6^(1/2)+1/4*2^(1/2))*3^(3/4)/a^(4/ 
3)/x/(-(b*x^2+a)^(1/3)*(a^(1/3)-(b*x^2+a)^(1/3))/(a^(1/3)-(1+3^(1/2))*(b*x 
^2+a)^(1/3))^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.17 \[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=-\frac {a \sqrt [6]{a+b x^2} \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},-\frac {7}{6},-\frac {3}{2},-\frac {b x^2}{a}\right )}{5 x^5 \sqrt [6]{1+\frac {b x^2}{a}}} \] Input:

Integrate[(a + b*x^2)^(7/6)/x^6,x]
 

Output:

-1/5*(a*(a + b*x^2)^(1/6)*Hypergeometric2F1[-5/2, -7/6, -3/2, -((b*x^2)/a) 
])/(x^5*(1 + (b*x^2)/a)^(1/6))
 

Rubi [A] (warning: unable to verify)

Time = 0.30 (sec) , antiderivative size = 401, normalized size of antiderivative = 1.28, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {247, 247, 264, 236, 234, 760}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {7}{15} b \int \frac {\sqrt [6]{b x^2+a}}{x^4}dx-\frac {\left (a+b x^2\right )^{7/6}}{5 x^5}\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {7}{15} b \left (\frac {1}{9} b \int \frac {1}{x^2 \left (b x^2+a\right )^{5/6}}dx-\frac {\sqrt [6]{a+b x^2}}{3 x^3}\right )-\frac {\left (a+b x^2\right )^{7/6}}{5 x^5}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {7}{15} b \left (\frac {1}{9} b \left (-\frac {2 b \int \frac {1}{\left (b x^2+a\right )^{5/6}}dx}{3 a}-\frac {\sqrt [6]{a+b x^2}}{a x}\right )-\frac {\sqrt [6]{a+b x^2}}{3 x^3}\right )-\frac {\left (a+b x^2\right )^{7/6}}{5 x^5}\)

\(\Big \downarrow \) 236

\(\displaystyle \frac {7}{15} b \left (\frac {1}{9} b \left (-\frac {2 b \int \frac {1}{\left (1-\frac {b x^2}{b x^2+a}\right )^{2/3}}d\frac {x}{\sqrt {b x^2+a}}}{3 a \sqrt [3]{\frac {a}{a+b x^2}} \sqrt [3]{a+b x^2}}-\frac {\sqrt [6]{a+b x^2}}{a x}\right )-\frac {\sqrt [6]{a+b x^2}}{3 x^3}\right )-\frac {\left (a+b x^2\right )^{7/6}}{5 x^5}\)

\(\Big \downarrow \) 234

\(\displaystyle \frac {7}{15} b \left (\frac {1}{9} b \left (\frac {\sqrt {-\frac {b x^2}{a+b x^2}} \sqrt [6]{a+b x^2} \int \frac {1}{\sqrt {\frac {x^3}{\left (b x^2+a\right )^{3/2}}-1}}d\sqrt [3]{1-\frac {b x^2}{b x^2+a}}}{a x \sqrt [3]{\frac {a}{a+b x^2}}}-\frac {\sqrt [6]{a+b x^2}}{a x}\right )-\frac {\sqrt [6]{a+b x^2}}{3 x^3}\right )-\frac {\left (a+b x^2\right )^{7/6}}{5 x^5}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {7}{15} b \left (\frac {1}{9} b \left (-\frac {2 \sqrt {2-\sqrt {3}} \sqrt {-\frac {b x^2}{a+b x^2}} \sqrt [6]{a+b x^2} \left (1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}\right ) \sqrt {\frac {\frac {x^2}{a+b x^2}+\sqrt [3]{1-\frac {b x^2}{a+b x^2}}+1}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}+\sqrt {3}+1}{-\sqrt [3]{1-\frac {b x^2}{b x^2+a}}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} a x \sqrt [3]{\frac {a}{a+b x^2}} \sqrt {\frac {x^3}{\left (a+b x^2\right )^{3/2}}-1} \sqrt {-\frac {1-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}}{\left (-\sqrt [3]{1-\frac {b x^2}{a+b x^2}}-\sqrt {3}+1\right )^2}}}-\frac {\sqrt [6]{a+b x^2}}{a x}\right )-\frac {\sqrt [6]{a+b x^2}}{3 x^3}\right )-\frac {\left (a+b x^2\right )^{7/6}}{5 x^5}\)

Input:

Int[(a + b*x^2)^(7/6)/x^6,x]
 

Output:

-1/5*(a + b*x^2)^(7/6)/x^5 + (7*b*(-1/3*(a + b*x^2)^(1/6)/x^3 + (b*(-((a + 
 b*x^2)^(1/6)/(a*x)) - (2*Sqrt[2 - Sqrt[3]]*Sqrt[-((b*x^2)/(a + b*x^2))]*( 
a + b*x^2)^(1/6)*(1 - (1 - (b*x^2)/(a + b*x^2))^(1/3))*Sqrt[(1 + x^2/(a + 
b*x^2) + (1 - (b*x^2)/(a + b*x^2))^(1/3))/(1 - Sqrt[3] - (1 - (b*x^2)/(a + 
 b*x^2))^(1/3))^2]*EllipticF[ArcSin[(1 + Sqrt[3] - (1 - (b*x^2)/(a + b*x^2 
))^(1/3))/(1 - Sqrt[3] - (1 - (b*x^2)/(a + b*x^2))^(1/3))], -7 + 4*Sqrt[3] 
])/(3^(1/4)*a*x*(a/(a + b*x^2))^(1/3)*Sqrt[-1 + x^3/(a + b*x^2)^(3/2)]*Sqr 
t[-((1 - (1 - (b*x^2)/(a + b*x^2))^(1/3))/(1 - Sqrt[3] - (1 - (b*x^2)/(a + 
 b*x^2))^(1/3))^2)])))/9))/15
 

Defintions of rubi rules used

rule 234
Int[((a_) + (b_.)*(x_)^2)^(-2/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[1/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 236
Int[((a_) + (b_.)*(x_)^2)^(-5/6), x_Symbol] :> Simp[1/((a/(a + b*x^2))^(1/3 
)*(a + b*x^2)^(1/3))   Subst[Int[1/(1 - b*x^2)^(2/3), x], x, x/Sqrt[a + b*x 
^2]], x] /; FreeQ[{a, b}, x]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 
Maple [F]

\[\int \frac {\left (b \,x^{2}+a \right )^{\frac {7}{6}}}{x^{6}}d x\]

Input:

int((b*x^2+a)^(7/6)/x^6,x)
 

Output:

int((b*x^2+a)^(7/6)/x^6,x)
 

Fricas [F]

\[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {7}{6}}}{x^{6}} \,d x } \] Input:

integrate((b*x^2+a)^(7/6)/x^6,x, algorithm="fricas")
 

Output:

integral((b*x^2 + a)^(7/6)/x^6, x)
 

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.96 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.11 \[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=- \frac {a^{\frac {7}{6}} {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{2}, - \frac {7}{6} \\ - \frac {3}{2} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{5 x^{5}} \] Input:

integrate((b*x**2+a)**(7/6)/x**6,x)
 

Output:

-a**(7/6)*hyper((-5/2, -7/6), (-3/2,), b*x**2*exp_polar(I*pi)/a)/(5*x**5)
 

Maxima [F]

\[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {7}{6}}}{x^{6}} \,d x } \] Input:

integrate((b*x^2+a)^(7/6)/x^6,x, algorithm="maxima")
 

Output:

integrate((b*x^2 + a)^(7/6)/x^6, x)
 

Giac [F]

\[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {7}{6}}}{x^{6}} \,d x } \] Input:

integrate((b*x^2+a)^(7/6)/x^6,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

integrate((b*x^2 + a)^(7/6)/x^6, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=\int \frac {{\left (b\,x^2+a\right )}^{7/6}}{x^6} \,d x \] Input:

int((a + b*x^2)^(7/6)/x^6,x)
 

Output:

int((a + b*x^2)^(7/6)/x^6, x)
 

Reduce [F]

\[ \int \frac {\left (a+b x^2\right )^{7/6}}{x^6} \, dx=\frac {-5 \left (b \,x^{2}+a \right )^{\frac {5}{6}} a -6 \left (b \,x^{2}+a \right )^{\frac {5}{6}} b \,x^{2}-\left (b \,x^{2}+a \right )^{\frac {2}{3}} \left (\int \frac {\left (b \,x^{2}+a \right )^{\frac {7}{6}}}{b^{2} x^{10}+2 a b \,x^{8}+a^{2} x^{6}}d x \right ) a^{2} x^{5}}{24 \left (b \,x^{2}+a \right )^{\frac {2}{3}} x^{5}} \] Input:

int((b*x^2+a)^(7/6)/x^6,x)
 

Output:

( - 5*(a + b*x**2)**(5/6)*a - 6*(a + b*x**2)**(5/6)*b*x**2 - (a + b*x**2)* 
*(2/3)*int((a + b*x**2)**(7/6)/(a**2*x**6 + 2*a*b*x**8 + b**2*x**10),x)*a* 
*2*x**5)/(24*(a + b*x**2)**(2/3)*x**5)