\(\int \frac {\sqrt {x}}{a+b x^2} \, dx\) [291]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 137 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}} \] Output:

-1/2*arctan(1-2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/a^(1/4)/b^(3/4)+1/2 
*arctan(1+2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/a^(1/4)/b^(3/4)-1/2*arc 
tanh(2^(1/2)*a^(1/4)*b^(1/4)*x^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(1/4)/ 
b^(3/4)
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.66 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=-\frac {\arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} \sqrt [4]{a} b^{3/4}} \] Input:

Integrate[Sqrt[x]/(a + b*x^2),x]
 

Output:

-((ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] + ArcTa 
nh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(Sqrt[2]*a^(1 
/4)*b^(3/4)))
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.56, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x}}{a+b x^2} \, dx\)

\(\Big \downarrow \) 266

\(\displaystyle 2 \int \frac {x}{b x^2+a}d\sqrt {x}\)

\(\Big \downarrow \) 826

\(\displaystyle 2 \left (\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle 2 \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle 2 \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {b}}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )\)

Input:

Int[Sqrt[x]/(a + b*x^2),x]
 

Output:

2*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/ 
4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1 
/4)))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + 
Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/ 
4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(106\)
default \(\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(106\)

Input:

int(x^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)
 

Output:

1/4/b/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/ 
(x+(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)* 
x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.96 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=\frac {1}{2} \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - \frac {1}{2} i \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (i \, a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) + \frac {1}{2} i \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - \frac {1}{2} \, \left (-\frac {1}{a b^{3}}\right )^{\frac {1}{4}} \log \left (-a b^{2} \left (-\frac {1}{a b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) \] Input:

integrate(x^(1/2)/(b*x^2+a),x, algorithm="fricas")
 

Output:

1/2*(-1/(a*b^3))^(1/4)*log(a*b^2*(-1/(a*b^3))^(3/4) + sqrt(x)) - 1/2*I*(-1 
/(a*b^3))^(1/4)*log(I*a*b^2*(-1/(a*b^3))^(3/4) + sqrt(x)) + 1/2*I*(-1/(a*b 
^3))^(1/4)*log(-I*a*b^2*(-1/(a*b^3))^(3/4) + sqrt(x)) - 1/2*(-1/(a*b^3))^( 
1/4)*log(-a*b^2*(-1/(a*b^3))^(3/4) + sqrt(x))
 

Sympy [A] (verification not implemented)

Time = 1.10 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.76 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=\begin {cases} \frac {\tilde {\infty }}{\sqrt {x}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 a} & \text {for}\: b = 0 \\- \frac {2}{b \sqrt {x}} & \text {for}\: a = 0 \\\frac {\log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} - \frac {\log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b \sqrt [4]{- \frac {a}{b}}} + \frac {\operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases} \] Input:

integrate(x**(1/2)/(b*x**2+a),x)
 

Output:

Piecewise((zoo/sqrt(x), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*a), Eq(b, 0)) 
, (-2/(b*sqrt(x)), Eq(a, 0)), (log(sqrt(x) - (-a/b)**(1/4))/(2*b*(-a/b)**( 
1/4)) - log(sqrt(x) + (-a/b)**(1/4))/(2*b*(-a/b)**(1/4)) + atan(sqrt(x)/(- 
a/b)**(1/4))/(b*(-a/b)**(1/4)), True))
                                                                                    
                                                                                    
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.26 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{2 \, \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{2 \, \sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{4 \, a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{4 \, a^{\frac {1}{4}} b^{\frac {3}{4}}} \] Input:

integrate(x^(1/2)/(b*x^2+a),x, algorithm="maxima")
 

Output:

1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x 
))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 1/2*sqrt(2)*ar 
ctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt( 
a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - 1/4*sqrt(2)*log(sqrt(2)*a^( 
1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + 1/4*sqrt(2 
)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^( 
3/4))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.33 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=\frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{3}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{3}} \] Input:

integrate(x^(1/2)/(b*x^2+a),x, algorithm="giac")
 

Output:

1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt 
(x))/(a/b)^(1/4))/(a*b^3) + 1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)* 
(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a*b^3) - 1/4*sqrt(2)*(a*b^ 
3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^3) + 1/4*sq 
rt(2)*(a*b^3)^(3/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b 
^3)
 

Mupad [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.28 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )-\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{{\left (-a\right )}^{1/4}\,b^{3/4}} \] Input:

int(x^(1/2)/(a + b*x^2),x)
 

Output:

(atan((b^(1/4)*x^(1/2))/(-a)^(1/4)) - atanh((b^(1/4)*x^(1/2))/(-a)^(1/4))) 
/((-a)^(1/4)*b^(3/4))
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.82 \[ \int \frac {\sqrt {x}}{a+b x^2} \, dx=\frac {\sqrt {2}\, \left (-2 \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )+2 \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )+\mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )-\mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )\right )}{4 b^{\frac {3}{4}} a^{\frac {1}{4}}} \] Input:

int(x^(1/2)/(b*x^2+a),x)
 

Output:

(b**(1/4)*a**(3/4)*sqrt(2)*( - 2*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt( 
x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2))) + 2*atan((b**(1/4)*a**(1/4)*sqrt( 
2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2))) + log( - sqrt(x)*b**( 
1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x) - log(sqrt(x)*b**(1/4)*a**(1/ 
4)*sqrt(2) + sqrt(a) + sqrt(b)*x)))/(4*a*b)