\(\int \frac {\sqrt {x}}{(a+b x^2)^2} \, dx\) [299]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 165 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\frac {x^{3/2}}{2 a \left (a+b x^2\right )}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{5/4} b^{3/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{4 \sqrt {2} a^{5/4} b^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{4 \sqrt {2} a^{5/4} b^{3/4}} \] Output:

1/2*x^(3/2)/a/(b*x^2+a)-1/8*arctan(1-2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1 
/2)/a^(5/4)/b^(3/4)+1/8*arctan(1+2^(1/2)*b^(1/4)*x^(1/2)/a^(1/4))*2^(1/2)/ 
a^(5/4)/b^(3/4)-1/8*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*x^(1/2)/(a^(1/2)+b^(1/ 
2)*x))*2^(1/2)/a^(5/4)/b^(3/4)
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\frac {\frac {4 \sqrt [4]{a} x^{3/2}}{a+b x^2}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{b^{3/4}}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{b^{3/4}}}{8 a^{5/4}} \] Input:

Integrate[Sqrt[x]/(a + b*x^2)^2,x]
 

Output:

((4*a^(1/4)*x^(3/2))/(a + b*x^2) - (Sqrt[2]*ArcTan[(Sqrt[a] - Sqrt[b]*x)/( 
Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])])/b^(3/4) - (Sqrt[2]*ArcTanh[(Sqrt[2]*a^( 
1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/b^(3/4))/(8*a^(5/4))
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.46, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {253, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {\int \frac {\sqrt {x}}{b x^2+a}dx}{4 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\int \frac {x}{b x^2+a}d\sqrt {x}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}}{2 a}+\frac {x^{3/2}}{2 a \left (a+b x^2\right )}\)

Input:

Int[Sqrt[x]/(a + b*x^2)^2,x]
 

Output:

x^(3/2)/(2*a*(a + b*x^2)) + ((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/ 
4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1 
/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a] - Sqrt[2]* 
a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sqrt[ 
a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^(1/ 
4)))/(2*Sqrt[b]))/(2*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {x^{\frac {3}{2}}}{2 a \left (b \,x^{2}+a \right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 a b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(127\)
default \(\frac {x^{\frac {3}{2}}}{2 a \left (b \,x^{2}+a \right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 a b \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(127\)

Input:

int(x^(1/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)
 

Output:

1/2*x^(3/2)/a/(b*x^2+a)+1/16/a/b/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^ 
(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2* 
arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2) 
-1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.24 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\frac {{\left (a b x^{2} + a^{2}\right )} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (a^{4} b^{2} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - {\left (i \, a b x^{2} + i \, a^{2}\right )} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (i \, a^{4} b^{2} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - {\left (-i \, a b x^{2} - i \, a^{2}\right )} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a^{4} b^{2} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - {\left (a b x^{2} + a^{2}\right )} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (-a^{4} b^{2} \left (-\frac {1}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) + 4 \, x^{\frac {3}{2}}}{8 \, {\left (a b x^{2} + a^{2}\right )}} \] Input:

integrate(x^(1/2)/(b*x^2+a)^2,x, algorithm="fricas")
 

Output:

1/8*((a*b*x^2 + a^2)*(-1/(a^5*b^3))^(1/4)*log(a^4*b^2*(-1/(a^5*b^3))^(3/4) 
 + sqrt(x)) - (I*a*b*x^2 + I*a^2)*(-1/(a^5*b^3))^(1/4)*log(I*a^4*b^2*(-1/( 
a^5*b^3))^(3/4) + sqrt(x)) - (-I*a*b*x^2 - I*a^2)*(-1/(a^5*b^3))^(1/4)*log 
(-I*a^4*b^2*(-1/(a^5*b^3))^(3/4) + sqrt(x)) - (a*b*x^2 + a^2)*(-1/(a^5*b^3 
))^(1/4)*log(-a^4*b^2*(-1/(a^5*b^3))^(3/4) + sqrt(x)) + 4*x^(3/2))/(a*b*x^ 
2 + a^2)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 400 vs. \(2 (146) = 292\).

Time = 17.50 (sec) , antiderivative size = 400, normalized size of antiderivative = 2.42 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\begin {cases} \frac {\tilde {\infty }}{x^{\frac {5}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 a^{2}} & \text {for}\: b = 0 \\- \frac {2}{5 b^{2} x^{\frac {5}{2}}} & \text {for}\: a = 0 \\\frac {a \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {a \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 a \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {4 b x^{\frac {3}{2}} \sqrt [4]{- \frac {a}{b}}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {b x^{2} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} - \frac {b x^{2} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 b x^{2} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b \sqrt [4]{- \frac {a}{b}} + 8 a b^{2} x^{2} \sqrt [4]{- \frac {a}{b}}} & \text {otherwise} \end {cases} \] Input:

integrate(x**(1/2)/(b*x**2+a)**2,x)
 

Output:

Piecewise((zoo/x**(5/2), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*a**2), Eq(b, 
 0)), (-2/(5*b**2*x**(5/2)), Eq(a, 0)), (a*log(sqrt(x) - (-a/b)**(1/4))/(8 
*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) - a*log(sqrt(x) + (-a 
/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) + 2*a*a 
tan(sqrt(x)/(-a/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)* 
*(1/4)) + 4*b*x**(3/2)*(-a/b)**(1/4)/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x* 
*2*(-a/b)**(1/4)) + b*x**2*log(sqrt(x) - (-a/b)**(1/4))/(8*a**2*b*(-a/b)** 
(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) - b*x**2*log(sqrt(x) + (-a/b)**(1/4)) 
/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4)) + 2*b*x**2*atan(sq 
rt(x)/(-a/b)**(1/4))/(8*a**2*b*(-a/b)**(1/4) + 8*a*b**2*x**2*(-a/b)**(1/4) 
), True))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.18 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\frac {x^{\frac {3}{2}}}{2 \, {\left (a b x^{2} + a^{2}\right )}} + \frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}}{16 \, a} \] Input:

integrate(x^(1/2)/(b*x^2+a)^2,x, algorithm="maxima")
 

Output:

1/2*x^(3/2)/(a*b*x^2 + a^2) + 1/16*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)* 
a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)* 
sqrt(b))*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) 
 - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b 
)) - sqrt(2)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a 
^(1/4)*b^(3/4)) + sqrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x 
 + sqrt(a))/(a^(1/4)*b^(3/4)))/a
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.21 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\frac {x^{\frac {3}{2}}}{2 \, {\left (b x^{2} + a\right )} a} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{2} b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{2} b^{3}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{2} b^{3}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a^{2} b^{3}} \] Input:

integrate(x^(1/2)/(b*x^2+a)^2,x, algorithm="giac")
 

Output:

1/2*x^(3/2)/((b*x^2 + a)*a) + 1/8*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2) 
*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(a^2*b^3) + 1/8*sqrt(2)*(a 
*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1 
/4))/(a^2*b^3) - 1/16*sqrt(2)*(a*b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4 
) + x + sqrt(a/b))/(a^2*b^3) + 1/16*sqrt(2)*(a*b^3)^(3/4)*log(-sqrt(2)*sqr 
t(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^3)
 

Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.39 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\frac {x^{3/2}}{2\,a\,\left (b\,x^2+a\right )}-\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{4\,{\left (-a\right )}^{5/4}\,b^{3/4}}+\frac {\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{4\,{\left (-a\right )}^{5/4}\,b^{3/4}} \] Input:

int(x^(1/2)/(a + b*x^2)^2,x)
 

Output:

x^(3/2)/(2*a*(a + b*x^2)) - atan((b^(1/4)*x^(1/2))/(-a)^(1/4))/(4*(-a)^(5/ 
4)*b^(3/4)) + atanh((b^(1/4)*x^(1/2))/(-a)^(1/4))/(4*(-a)^(5/4)*b^(3/4))
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.85 \[ \int \frac {\sqrt {x}}{\left (a+b x^2\right )^2} \, dx=\frac {-2 b^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )-2 b^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}+2 b^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )+2 b^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}+b^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )+b^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{2}-b^{\frac {1}{4}} a^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )-b^{\frac {5}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right ) x^{2}+8 \sqrt {x}\, a b x}{16 a^{2} b \left (b \,x^{2}+a \right )} \] Input:

int(x^(1/2)/(b*x^2+a)^2,x)
 

Output:

( - 2*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x 
)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a - 2*b**(1/4)*a**(3/4)*sqrt(2)*at 
an((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt 
(2)))*b*x**2 + 2*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
 + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a + 2*b**(1/4)*a**(3/4) 
*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a* 
*(1/4)*sqrt(2)))*b*x**2 + b**(1/4)*a**(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/4 
)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a + b**(1/4)*a**(3/4)*sqrt(2)*lo 
g( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b*x**2 - b** 
(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + s 
qrt(b)*x)*a - b**(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt 
(2) + sqrt(a) + sqrt(b)*x)*b*x**2 + 8*sqrt(x)*a*b*x)/(16*a**2*b*(a + b*x** 
2))